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ABSTRACT OF THE DISSERTATION

An Application of Knowledge-Based Systems to
Electronic Computer-Aided Engineering, Design,

and Manufacturing Data Base Transport

by

Richard Preston Hooper
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1985
Professor Michel A. Melkanoff, Chair

The proliferation of computer-aided engineering (CAE), design
(CAD) and manufacturing (CAM) systems for electronic design has created
a excess of CAE/CAD/CAM database formats. These databases vary
from one system to the next, and yet they often carry common informa-
tion, represented in different formats. In spite of this variation, databases
must be transported between systems, since electronic design requires the

use of features from several CAE/CAD/CAM systems.

xiit



The significance of this work is underscored by other attempts to
define a transport method. Most notable is the IGES (Iritial Graphics Ex-
change Specification) standard. Thus far, there are shortcomings with these
methods. The IGES standard was primarily developed to handle
CAE/CAD/CAM data used to describe mechanical designs not electronic
designs. Consequently, IGES does not address all of the data elements of
electronic CAE/CAD/CAM systems.

Commercial offerings which translate between CAE/CAD/CAM for-
mats do not translate all of the data. This is because there is usually some
data which is unique to each system and cannot be translated. Most com-
mercial translators disregard this data. This is not satisfactory in all cases,

since important data relationships are lost in translation.

This dissertation defines a methodology for the transport of data-
bases between independent CAE/CAD/CAM systems. In order to demon-
strate the feasibility of this methodology, a prototype system was
developed. A non-traditional, expert systems approach was used to solve
the problems which have plagued earlier attempts at a data transport
method. The prototype was implemented using PROLOG, running under
LOCUS/UNIX on a VAX network. The research has heen limited in scope
to CAE/CAD/CAM systems used for the development of electronic systems

as opposed to mechanical systems.

The conclusion of this research is that a this approach can be used
to provide a method for transporting data between distinct
CAE/CAD/CAM system types. The prototype translation algorithm is
driven by knowledge bases which describe the CAE/CAD/CAM data for-

Xiv



mats and semantics. New systems can be added to the knowledge base

with a relatively minor amount of effort.
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CHAPTER 1
INTRODUCTION

The purpose of this dissertation is to develop a methodology for
transporting data bases of differing form, schema, and content between dis-
tinct types of systems for computer-aided engineering (CAE), design
(CAD), and manufacturing (CAM). The focus of this work is in the elec-
tronic design field in contrast with other fields (e.g., mechanical design).
The dissertation describes electronic CAE/CAD/CAM and the requirement
for data transport, defines a2 data transport methodology, presents a proto-
type system, and analyzes the application of the prototype to several test

cases.
Background

The need for increased productivity through the automation of elec-
tronic systems development has brought about rapid development of
CAE/CAD/CAM systems. Several companies have developed commercial
systems providing one or more CAE/CAD/CAM functions for the develop-
ment of digital/analog circuits, printed circuit boards, and VLSI chips.

New systems are constantly becoming available.

Since CAE/CAD/CAM provides a highly competitive .narket, most

companiec ave worked independently, often without regard for the prob-



lem of interfacing their system with other systems. However, the complete
cycle of electronic system development requires that features of several sys-
tems be used. No system provides all features necessary for the design, im-
plementation, and fabrication of an electronic system. Several

CAE/CAD/CAM functions are necessary, including

graphics/drafting,
e  design capture,
e  analysis/simulation,
e  placement/route,
° layout and artwork generation, and
. manufacturing aids generation.
Usually these functions will reside on several different computer systems.

Without the benefit of a method for automatically transporting data
between systems in order to use each function, the only alternative is to
manually re-encode the data necessary to drive each CAE/CAD/CAM sys-
tem. This approach is expensive sfnce the data must be verified each time
the encoding process is repeated. This approach also results in unnecessary
delay which defeats a major purpose behind the use of CAE/CAD/CAM.
Consequently, there is a strong motivation to translate databases between

systems, automatically.



Another motivation for database transport between
CAE/CAD/CAM systems is to set up libraries of common data (e.g.,
graphic symbol libraries). Once established, a single library can be shared
by different vendor systems providing that some data translation method is
available. Maintenance of libraries is thus reduced by only requiring the

update of a single common library.

However, since each brand of CAE/CAD/CAM system utilizes a
different database schema/organization, there has been no direct, general
data mapping approach available. Typically, specific point-to-point trans-
lators are developed by users as needed. The difficulty with this approach
is that when the source and/or target data formats are revised by the sys-
tem developers, the translators must be rewritten. Also, it is difficult to in-
tegrate new systems into a distributed CAE/CAD/CAM system network,
since translators must be written to move data between the new system

and each other system with which it interfaces.
Goal

An alternative data transport methodology is the goal of this doe-
toral research. The research began about six years ago, motivated by the
requirement for data transport within the CAD environment at the Radar
Systems Group (RSG) of Hughes Aircraft Company. By investigating the
flow of information from the inception of an electronic design to its fabrica-
tion, it was clear that several CAE/CAD/CAM systems were required, and
that the individual data bases of these systems were unique in both form
and content. Six years ago at RSG, there were a few Computervision sta-

tions, two CALMA's, a DECsystem-10 (running Hughes-developed CAD



software), and a Hughes schematic capture (graphics) system. At that
time, data was not easily transported between systems. For example, data
entered on the Hughes schematic capture system was used to facilitate
changes to the drawing and subsequent re-draw. Once the design was
final, the drawing was released. In order to get a schematic database onto
the DECsystem-10 CAD system, the data on the schematic drawing was

re-encoded for data entry directly onto the DECsystem-10.

In the years which followed up to the present, this requirement
remains. CAE/CAD/CAM technology has undergone many improvements,
but the need for a data transport methodology has not been eliminated.
The same CAD organization at Hughes RSG has grown and in addition to
the systems available six years ago, there are more CV's, more CALMA’s,
two DECsystem-20’s (the DECsystem-10 was converted), two VAX's (run-
ning VLSI/VHSIC CAD system), 16 VALID Logic Workstations, and two
DAISY systems. Because the number of distinct types of CAE/CAD sys-
tems has increased, the data transport problem has become more complex.
Attempts at identifying standards within classes of CAE/CAD/CAM data

(e.g., schematic, layout, artwork) have succeeded on a limited basis.

Indeed, within the last five years there has been an effort to estab-
lish an international CAD data standard, "Initial Graphics Exchange
Specification (IGES).” This standard has developed slowly and the major
emphasis has been on graphics information and the mechanical
CAE/CAD/CAM application. Finally, in 1980, version 1.0 of this standard
was accepted and released as an ANSI standard. The intent of the stan-

dard is that all systems will provide interfaces to and from their internal



formats into the IGES format. There is no date yet projected for when
this might be feasible. Also, there is uncertainty as to whether all commer-
cial systems will adhere to this standard for economic reasons. The emer-

gence of alternative CAD data standards add to the uncertainty.

This year, a new format was introduced for CAE/CAD/CAM data
transport. As yet, version 1.0 of this Engineering Design Interchange For-
mat (EDIF) has not been formally released. The inclusion of EDIF in this
dissertation occurred recently. The contribution of this potential standard
as described in its preliminary release will still not address many of the
problems described in Chapter 3. However, as new standards arise, they
may add to the growing superset of all data entities which describe elec-

tronic designs.

This dissertation will attempt to further clarify the problems of
CAE/CAD/CAM data transport, define a solution to the problems, and
describe a prototype which demonstrates the feasibility of the concepts
developed. To begin with, the CAE/CAD/CAM environment is described
in Chapter 2. This includes a description of how data flows between
CAE/CAD/CAM processes in both microelectronics (chip) design and
printed circuit board design. The categories of this data and differences in
its representation between systems are presented. This chapter concludes

with a review of existing standards for CAE/CAD/CAM data exchange.

Chapter 3 defines the proposed data transport methodology. First,
the difficulties in transporting data between systems are described. Then,
the general approach to overcoming the difficulties is presented. Finally, a

systems architecture is defined.



Chapter 4 describes the prototype system. The proposed system has
been implemented using PROLOG. This chapter contains a brief introduc-
tion to PROLOG, a description of the PROLOG programs used to proto-

type the proposed system, and an explanation of how the prototype

operates.

Chapter 5 describes several test cases which demonstrate the feasi-
bility of the prototype. One case is the transport of a hypothetical
schematic data base into another, different hypothetical format. The
second case involves translating an actual schematic data base (TEGAS
description language - a.k.a. TDL) into a Hughes PCB CAD data base for-
mat. In this second case, not only is the data base translation demonstrat-
ed, but also, a compiler was written and is presented to demonstrate the
feasibility of translating an arbitrary CAE/CAD/CAM data language into
a generic format. Firally, a third example, two widely recognized, but dis-
tinct data formats used for VLSI layout description (CALMA Stream For-

mat and CalTech Intermediate Form) are transformed both ways,

Chapter 6 summarizes the work and states the conclusions which

were drawn during the conduct of the experiments.

Appendix A contains a glossary of terms to aid the reader and to

3

clarify the intent of the author.

Appendix B discusses an earlier prototype implementation approach
which was attembpted using data base technology. This approach was sub-
sequently abandoned due to inherent problems with t(ranslation rule

representation. This decision led to the use of a knowledge-based systems



approach using Prolog.

Appendices C through G show sample CAE/CAD data bases which

were used as test cases for the prototype described in Chapter 4.

Appendix H shows an excerpt of the syntax for the TEGAS Design
Language (TDL). The excerpt is included so that the TDL sample of

Chapter 4 can be better understood.

Appendices I, J, and K provide a data base and rules used as inputs

in a CALMA to CIF test case described in Chapter 5.

Finally, Appendices L, M, N, O, P, Q, and R provide the various
outputs from the prototype implementation for the CALMA to CIF test

case.



CHAPTER 2
CAE/CAD/CAM ENVIRONMENT

To illustrate the data transport problem, consider a representative
CAE/CAD/CAM environment for electronic design. The design process
consists of several stages of definition, simulation, analysis, and mechaniza-
tion until the design goal is reached. The process is iterative and
CAE/CAD/CAM tools are utilized at all stages of this design process to
perform computationally complex tasks, improve the quality and reliability
of the design, and to verify consistency between the various stages of
design. Each CAE/CAD/CAM tool/system has unique data input/output
formats. A more in-depth look at the electronic design process, the
CAE/CAD/CAM tools, the data used by the tools, and data standards will

make this more apparent.

The first step in the electronic design process is the conceptual
design of the system. This is a top-level definition which identifies the ma-
jor functions to be performed by the system. All of the requirements are
allocated to one of the various functions. System performance parameters
are related to the funct.ions which affect their outcome. Conforming to
performance requirements and environmental considerations, the selection
of electronic circuit technology will be made (e.g., TTL, Shottky, ECL,
CMOS, Custom VLSI, Gate Array, etc.) and the physical packaging will be



established. Once the functional specification is established, each function
is defined in terms of processes to be performed, inputs, outputs, and the
functions with which they interface. Usually this relationship is illustrated
with a system-level block diagram. Figure 2.1 shows an example of a block
diagram for a hypothetical computer system. This conceptual definition of
the system and top-level functional decomposition is generally performed
without the use of a CAE system, although several computer simulations

and other analyses are used.

Each system function to be performed is sufficiently described so
that the next level of detail can be defined. In the case of the hypothetical
computer system (Figure 2.1), the next step of refinement might break
down the "Instruction Decoder & Control” into sub-functions. Refinement
and functional decomposition continue until a level is reached which can be
implemented on a standard physical device such as a gate array, custom
wafer, or a printed circuit board (PCB). At this point, the development of
the device begins. The development flow consists of the several steps
shown in Figure 2.2: logic/circuit design, physical design, manufacture, and

test.
2.1 Custom VLSI or Gate Array

When a logic function is to be implemented into a gate array or cus-
tom VLSI chip, the design may have several levels of hierarchy. The lowest
level refers to primitive cells (macros). These are implemented using analog
devices which are built into the semiconductor medium. This hierarchical
design style is shown in Figure 2.3. In this example the functions "NAND"

and "INV" are primitive cells.



Address MEMORY
MEMORY  [& ADDRESS
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Figure 2.1. Sample System Level Block Diagram.
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Typically, when a gate array or custom VLSI design begins, a library
of standard primitive cells is formed from basic logic functions as those in
the preceding example ("NAND" & "INV"). In some cases, the primitives
may be quite intricate, utilizing > 100 transistors. These standard primi-
tives are analog designs whose functions can be verified by a circuit simula-
tor. This simulation will verify the proper voltage levels, voltage transi-
tions, and timing. At the end of this activity, the library of primitive cells
will be available as a foundation upon which logic design will be built. The
circuit simulation will also generate the necessary data to formulate logic
models for higher level logic simulations, working with digital (Boolean) sig-

nals rather than analog simulations.

Once the primitive cell library is available, attention turns back to
the top-level block diagram. Each function at this level is decomposed into
sub-functions, and these sub-functions are sub-divided again. This func-
tional decomposition repeats until the primitive cell level is reached. Once
a sub-function can be expressed in terms of primitive cells which have logie

siniulation models, the sub-function can be verified using a logic simulator.

As sub-functions are sirnulated and verified, they can be combined
to form larger functions. The larger functions can then be verified by
simulation. This process is repeated until the entire gate array or custom

VLSI device is verified.

In conjunction with logic simulation, timing verification is used at
each level in the hierarchy. The signal propagation delays are computed
using timing models for all cells and the signal media itself. A network

analysis of these propagation delays will verify that signals arrive at the

13



proper time at the various nodes in the path.

When the gate array or custom VLSI device has a completed logic
design which has been verified, then the logic design must be mechanized
into interconnected physical cells within a wafer geometry. The CAD tools
identified in Figure 2.2 are used to achieve this. First, the primitive cells
are placed according to routability criteria, taking into consideration any
thermal restrictions and/or timing constraints. Cell placement can be ac-

complished either manually or semi-automatically.

With the cells placed, signal routing proceeds. Using the available
conductor layers in a gate array or custom VLSI device, paths are selected
according to the routing algorithm deployed. After automatic routing is
finished, there are often signals for which a path could not be found by the
router. These "route fails" must be resolved by ripping up routed lines,
and manually re-routing the “route fails” and any ripped-up lines. After
manual re-route, a design rule check is performed to determine if any
geometric spacing constraints, imposed by the circuit and process technolo-
gy (e.g., CMOS), have been violated. Electrical rules must also be checked
to determine layout correctness with regard to electrical parameters, such
as loading. Another check performed after any re-routes is a schematic
check. This verifies that all signals in the logic design have a physical
couaterpart in the layout. Once the layout passes all of the post-route
checks, a pattern generator tape is produced. This tape is used to guide

the various steps in the fabrication process.
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When all of the gate-array and custom VLSI devices have been
designed and fabricated, they can be combined to construct a printed cir-

cuit board, implementing still a larger scale function.

2.2 Printed Circuit Boards In the case of a PC board implementation,
this level of functional decomposition constitutes the first level above the
components which have been selected by the circuit technology decision at
the conceptual design step. Examples of components might be logic ele-
ments (e.g., NAND gates, counters, and registers), integrated circuit chips

(IC's), or discrete analog parts (e.g., resistors, transistors, capacitors, etc.).

Each PC board is finally defined in sufficient detail so that a com-
pleted design can be carried through to fabrication. The PC board is do-
cumented in terms of a block diagram showing subfunctional areas (i.e.,
macros). As the PC board is refined, various subfunctions are designed us-
ing components from the set of the selected circuit technology. During this
refinement a logic schematic is developed, detailing all of the logical ele-
ments and how they are interconnected to perform the specified function

(see Iigure 2.4).

As portions of the logic are defined, simulation is performed to in-
sure the proper logic functioning of the design before it is implemented us-
ing actual components. Timing analysis is performed to insure that there
were no incorrect assumptions made about the delays in signal propagation
through various logic elements or errors in clocking. Signal loading and
drive capacity are also checked to insure compliance with electrical rules.
Any problems detected are corrected before the logic design is released for

physical design.
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When the PCB design activity is completed, each logic element is as-
signed to a physical component or chip. In small scale integrated circuitry,
chips often contain multiple logic elements of the same type (e.g., 4 NAND
gates). After the assignment of logic elements to components, the com-
ponents are located on the PC board. At this time the placement is
analyzed before signal routing to insure correct thermal distribution over
the PC board. Once the design passes these validation tests, the next step
is to route the interconnections between components upon the remaining
PC board area not taken up by components and other obstacles. After
route, a final analysis is performed to determine if the paths chosen violate
signal length requirements thus causing timing problems or whether there
is too much parallelism among adjacent signals to constitute inductive
noise problems. Assuming the selected route paths pass these critical tests,

the design is complete and ready for manufacture.

Manufacturing consists of etching and drilling the printed circuit
boards, generating continuity tests for the etched board, inserting com-
ponents upon the board, soldering the components in place, and wiring the
backplane which contains slots for the individual printed circuit boards.
In addition to these processes associated just with the electronic aspects of
the design, there are many other fabrication processes necessary to assem-

ble all of the mechanical parts into a final system.

The use of CAE/CAD/CAM tools has had a significant impact on
this overall design process. Figure 2.2 shows where data bases and au-

tomated tools are used to assist in the electronic design.
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2.3 CAE/CAD/CAM Tools

The intent of CAE/CAD/CAM is to off-load any processes which do
not require human judgement and experience onto automated processes,
i.e., to effectively utilize man and machine resources. Automation is ap-
plied to the design and manufacturing cycle in several areas. Figure 2.5
lists several CAE/CAD/CAM functional areas with examples of tools in

each area.

Logic Design Aids. From the time a designer receives a requirement
specification until a prototype is developed, logic design aids facilitate deci-
sion making. To begin with, graphics editors allow a designer to enter,
edit and display his evolving logic schematic. As the design proceeds,
design aids software indicates any deviation from standards and warns the
designer about potential logic errors, producibility problems, and testing
difficulties. This feedback speeds up the development cycle by calling to
the attention of the designer details that he might have discovered at a less

opportune time during development.

Logic simulators and test pattern generators can also be used incre-
mentally as a designer adds more of his logic to the emerging design.
These tools help the designer evaluate trade-offs and select the best of
design alternatives. In general, the designer gains confidence in his design
because the tools identify logic errors and measure how easily the design

can be tested once fabricated.

Analysis Tools. Along with logic design aids, analysis tools also raise

confidence that the design is correct and will function properly once it is
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Logic Design Aids

. Graphic (Schematic)
Editor

. Logic Simulator

. Test Case Generator

Physical Design Aids

. Routing

. Gate Assignment

. Component Placement
. Design Rule Checks

. Post Route Analysis -
Line Lengths, Sig-
nal Parallel Runs

Manufacturing Aids

. Numerical Control
Machinery Data -
Drill, Auto
Component Inser-
tion

. LSI Mask File

. PCB Artwork File

Analysis Tools

. Thermal Analysis

. Propagation Delay &
Timing Analysis

. Noise Margin Analysis

. Loading Analysis

Drawings & Reports

. Assembly Drawings
. Schematic Drawings
. Pin/Signal Lists

. Parts Lists

. Test Case Data

Libraries/Data Bases

. Graphics Capture

. Logic Design (Schematic)
Data Base

. Configuration Management
Status

. Standard Components/
Parts Layout Library

. Layout/Route Data Base

. LSI Macro Cell Library

. Drawing Symbol Library

. Simulation/Timing
Models Library

. Component Packages
Library

Figure 2.5. CAE/CAD/CAM Data Functions.
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implemented into a physical design. For example, loading analysis will in-
dicate whether there are too many components being driven from a single
signal source. Analysis of the physical design before fabrication will often
prevent costly errors. For example, once components have been placed on a
printed circuit board (PCB), a thermal analysis will indicate whether
overheating is likely to occur from the placement of too many "hot" parts

in close proximity of one another.

Physical Design Atids. Once the logic design is complete, the
mechanical, geometrical, and other non-electrical constraints must be used
to determine how to implement the design. The steps involved include
placement and route. Once standards for board/wafer geometry and ther-
mal requirements are established and defined in libraries, placement and
route can proceed automatically, driven by the logic design data base and a
few directives which define router strategies and priorities to be considered

during these processes.

Drawing/Report Generation. The output of CAE/CAD/CAM
processes is typically a report or a drawing. Following the schematic cap-
ture, a pin/signal report is written which contains all of the information
pertaining to which components are interconnected. A schematic drawing
is the best format to display and verify the logic design data following
design capture. The designer can make design changes to the schematic
and have a clean drawing produced with the new changes reflected. An as-
sembly drawing can be generated automatically once the components

have been placed. This can be used by manufacturing planners to provide

instructions on how to build a PC board. In general, CAE/CAD/CAM ’
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processes create, use, and update design data which is then presented in

the form of drawings or reports.

Libraries/Data Bases The CAE/CAD/CAM processes require a large
volume of data in order to describe the designs under development. Li-
braries of standard parts or cells and board/wafer geometries are main-
tained to minimize the amount of data that must be re-entered each time a
new design is created. Libraries are created for simulation and timing
models, drawing symbols, cell layout patterns, component package
specifications, and component artwork (footprint) patterns. These libraries
minimize errors and insure consistency, where necessary, from one design

to the next.

A design data base is created for each design. This contains data
such as the logic network, assignment of logic gates to physical
components/cells, placement locations, and signal routing. The data base
contains references to standard library parts/cells, board/wafer. geometries,
and the interconnection of parts. While the collection of data describing a
design is referred to as a data base, the data actually may reside in a
variety of files and data bases depending upon the CAE/CAD/CAM sys-

tem. Examples include those listed in Figure 2.5.

Because of the large number of parameters in the design data bases
and libraries, changes in a design after its entry into a CAE/CAD/CAM
system can have far reaching effects. For example, the decision to substi-
tute parts in a design can affect several data bases. If a design has been
released for manufacture, it means that a significant commitment has been

made in time and money to the system configuration in which the design is
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embedded. Still, changes are sometimes necessary after initial release and
a method is necessary to keep track of which revision of one design is to be
interfaced with other designs which together consitute a complete
configuration. This is the role of a configuration management system, and

some CAE/CAD/CAM systems provide this facility.

Manufacturing Aids. Once the design is complete and the physical
implementation routines have obtained a feasible mapping of logic into
components and interconnections within the established constraints,
manufacturing aids are generated from the design data base. Computer-
aided manufacturing relies on these tools to improve the throughput of the
factory much the same way CAD tools improve the productivity of en-
gineers. Examples of manufacturing aids include photo-plotter tapes for
artwork generation/PCB etch, automatic assembly files, continuity check
tapes, and drill tapes. Each of these aids represents a final output derived
from the various CAE/CAD/CAM data elements describing the equip-

ment to be built.
2.4 CAE/CAD/CAM Data for Electronic Design

CAE/CAD/CAM data for eleetronic equipment, such as a radar sig-
nal processor, can be broken into several categories of information: logi-
cal, physical, electrical, thermal, and timing. In each category, the data
type may be textual, numeric, graphic, or special-purpose. Each data type
may have several variations such as floating-point and integer numeric
representations. Figure 2.6 lists the data categories, and examples of infor-
mation in each category. Usually the format of a specific category of data

varies from one CAE/CAD/CAM system to the next. There are numerous
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LOGICAL

. Digital/Analog Function
. Schematic Drawing

. Graphic Symbols

. Logie/Circuit Network

PHYSICAL

. Component Size

. Pin Description

. Board/Wafer Geometry
. Assembly Drawing

. Pin/Signal Data

ELECTRICAL THERMAL

. Power Consumption . Heat Dissipation

. Loading

TIMING
. Rise/Fall Times

. Clock Cycle
. Set-up/Hold Times

Figure 2.6. CAE/CAD/CAM Data Categories.

approaches to establishing a structure for CAE/CAD/CAM data bases.
Many of these have been documented, and are referenced here as back-
ground. [Ciam76a, Ciam76b, Gutt82, Hask82, Kawa78, Lacr81, Such79,
Vall75, Wilm79, Wong79, TDL83, Mead80] At this time there are numerous
commercial CAE/CAD/CAM systems, and each maintains a distinct data



base format: CAE Systems, CALMA, Computervision, Daisy, Mentor

Graphies, Silvar-Lisco, and Valid Logic to name a few.

It is precisely the wide variety of data formats which has created the
problem of CAE/CAD/CAM data transport. Two cases demonstrate the

problem.

Case 1. Consider a data base consisting of schematic interconnect
information. A sample schematic diagram was shown in Figure 2.4. A
data base representing this information describes how the component pins
are connected logically. This data can be represented in a variety of ways

and is referred to as "pin-signal data”, "from-to data”, and by other names

which connote the data content.

One example of the format this data takes is provided by the
Hughes DECsystem-20 CAD system {Wong79]. Here, interconnect data is
contained within the "Build-Design” data base. The structure of this data

is indicated in Figure 2.7.

Figure 2.8 shows the data content of the build-design data base for
the sample shown in Figure 2.4. This data base represents a PCB design by
describing the components, their pins, pin function, signal names, and

other data used by a variety of CAE/CAD/CAM processes.

Another format for schematic interconnect data is that of an often
used test system at Hughes Aircraft: the Hewlett-Packard (HP) DTS-70
system [HP80]. The syntax for this data is shown in Figure 2.9. This form
is man/machiné readable (ASCII) since it is also designed for direct manual

output into the system. In order to reduce error and minimize time, a spe-
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ATTRIBUTE SIGNAL ABBREV S TEXT KEYED COL 1 8
ATTRIBUTE FEED THRU ABBREV FT TEXT COL 9 9
ATTRIBUTE TEST ~POINT ABBREV TP TEXT COL 10 10
ATTRIBUTE CONNECTOR ABBREV CR TEXT COL 11 11
ATTRIBUTE COMPONENT _ NAME ABBREV CN TEXT
KEYED COL 12 15
ATTRIBUTE COMPONENT _ PIN ABBREV CP TEXT
KEYED COL 16 20
AT'I(‘)I}‘]BUTD PAGENUMBER1 ABBREV PN1 TEXT
COL 22 23
ATTRIBUTE PIN SWAP ABBREV PS TEXT COL 24 24
ATTRIBUTE SEQUENCE ABBREV SEQ TEXT COL 25 26
ATTRIBUTE CRITICALITY _CODE ABBREV CC TEXT
KEYED COL 30 31
A’l(‘:"’l(‘)I}JIBUTE ELEMENT _PIN ABBREV EP TEXT
32 32
A’I(‘;"I(‘)I}JIBUTE ELEMENT _ ADDRESS ABBREV EA TEXT
33 34
A’I(‘J"I(‘)I}JIBUTE MULTIPLE _ SOURCE ABBREV MS TEXT
35 35
ATTRIBUTE SOURCE ABBREV SR TEXT COL 36 36
ATTRIBUTE ELEMENT _NAME ABBREV EN TEXT
KEYED COL 37 42
ATTRIBUTE ELEMENT _TYPE ABBREV ET TEXT
KEYED COL 47 56
ATTRIBUTE LOAD ABBREV LD REAL COL 57 65
A’I(‘:I(‘)I}JIBUTE PIN _FUNCTION ABBREV PF TEXT
OL 66 70
ATTRIBUTE NO CONNECT ABBREV NC TEXT COL 71 71
ATTRIBUTE SIGNAL TYPE ABBREV ST TEXT COL 72 72
A’I(‘_J’I(‘)I}JIBUTE COMPONENT _ TYPE ABBREV CT TEXT KEYED
81 88
ATTRIBUTE PINQUANTITY ABBREV PQ TEXT
COL 105 106
ATTRIBUTE DOC DATE OF CHANGE COL 142 149
ATTRIBUTE COMPONENT _ ADDRESS ABBREV CA TEXT
KEYED COL 161 170

Figure 2.7. Build-Design Data Base Structure.




S CN CP CT SR EN ET EP PF
CLOCK1 U001 13 54L5109 Uool JK J CK
CLOCK1 CONN 1 CONN T CONN CONN 1 O
SIGA1L CONN 2 CONN T CONN CONN 2 O
SIGAL vuooz 1 54L.S00 U0021 2NAND A I
SIGA?2 CONN 3 CONN T CONN CONN 3 O
SIGA2 vooz 2 54L.S00 U0021 2NAND B I
SIGB1 CONN 4 CONN T CONN CONN 4 O
SIGBI1 U002 4 54L.S00 Uo022 2NAND A I
SIGB2 CONN 5 CONN T CONN CONN 5 O
SIGB2 Uuoo2 5 541.S00 Uo022 2NAND B 1
RESET CONN 6 CONN T CONN CONN 6 O
RESET U003 13 5406 U036 INV A 1
SIGA Uooz 3 54LS00 T U021 2NAND Y O
SIGB voo2 6 54LS00 T Uoo22 2NAND Y O
Figure 2.8. Build-Design Data Base for Sample Schematic.

cial purpose transiator has been written to dump the DECsystem-20 based

CAD system Build-Design data base into the HP DTS-70 form suitable for

output into the HP DTS-70 system.

Case 2. Another instance of similar data content in different for-
mats is the DECsystem-20 CAD Build-Design data base versus the Compu-
tervision {(CV) Electrical Schematic-Printed Circuit (ES-PC) Data Base
[CVPCS83, CVDB83]. ldeally, the two systems should be capable of data in-
terchange so that the CV system can be used for graphic data entry,
display, and editing while the DEC-20 can be used for CPU-intensive com-

putation involved in highly-dense digital printed circuit board physical
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*HEADER
MODULE: <module-name> REVISED: <date>
*LIB <model-lib-1> <model-lib-2>
*MAIN <title>$
*INPUTS
<input-connector-name >( < pin-loc-1>, <pin-loc-2>, ...
<pin-loc-n>)$

*OUTPUTS
<output-connector-name>( <pin-loc-1>, <pin-loc-2>, ..
<pin-loc-n>)§ \

*GATES

<input-connector-name>( < connector-type>)
<signal-name-1>.<pin-loc-1>
<signal-name-2>>.<pin-loe-2> ...

<output-connector-name >( < connector-type>)
<signal-name-1>.<pin-loc-1>
<signal-name-2> . <pin-loc-2> ...

* <L component-name-1>
< component-address > (< component-type>)
<stgnal-name-1>.<pin-1> <signal-name-2>.<pin-2> ...

* <component-name-2>

< component-address>( < component-type>)
<signal-name-1>.<pin-1> <signal-name-2>.<pin-2> ..

* <component-n:;,me-n>
< component-address> (< component-type>)
<signal-name-1>.<pin-1> <signal-name-2>.<pin-2> ...

$
*END

Figure 2.9. Hewlett-Packard DTS-70 Pin-Signal Data Input Syntax.




design algorithms (e.g., routing).

The DEC-20 system data base (shown in Figure 2.7) is organized in
a tabular format similar to the relational data model using System 1022™
a data base management system from Software House [Soft84]. In addition
to the Build-Design data base, compbnent information is stored in a library
contained in two principle data tables as shown in Figure 2.10: the Com-
ponent Index table and the Component Pin table. This data is used for
analyzing designs and for implementing a logical design into a physical lay-

out with associated interconnect etch lines.

The CV ES-PC data base is organized into 2 Master Index of enti-
ties which are represented in detail within a Part Data File (PDF). Each
entity represents a graphic element within a larger drawing. Parts are
comprised of these elements and may be nested in a hierarchical manner in
order to form more complex drawings. In fact, each drawing is just anoth-
er part which is stored into the PDF and pointed to by the Master Index.
Figure 2.11 lists the entities associated with the ES-PC application {21) on
the CV. The orientation of the CV data is toward graphic presentation of
the data. Even though there are analysis and some physical design func-
tions which can be performed on the CV system, the magnitude of com-
plexity which the CV system is capable of handling is much more limited in
comparison to the DEC-20, due to CPU power differences. The CV system

is well suited to editing of logic circuits using graphic representations, with

(1) The CV system is general-purpose and supports many
other applications such as mechanical parts drawing,
surveying, architecture, etc. While each application uses the
same data base concept, the entities may be different.
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Component Index Data Component Pin Data

DEFAULT SIGNAL NAME COMPONENT TYPE
COMPONENT TYPE PART DESIGNATOR
PART DESIGNATOR COMPONENT PIN
DESIGNATOR TYPE CONNECTOR
PACKAGE CODE TEST POINT
DESCRIPTION FEED THRU
REMARK ELEMENT ADDRESS

ELEMENT TYPE

ELEMENT PIN

PIN FUNCTION

SOURCE

PIN SWAP

LOAD

OVERRIDE CODE

SIGNAL TYPE

NO CONNECT

Figure 2.10. Hughes DEC-20 CAD System Data Base.

a straight-forward manipulation language entered via stylus and menu ta-

blet.

The mapping from DEC-20 to CV data bases is complex in that the
elements of a component or a schematic are not represented by unique en-
tities on the CV system. Most of the data which should be shared between
the two systems is textual in nature (e.g., signal names, pin functions, com-
ponent names, etc The use of text on the CV system is rather unrestricted,
and as a result, it is only by context that a textual data element on the CV

system can be associated with a data element in the DEC-20 data base.
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The difficulty is shown graphically by the intersection of the sets of data
which each system maintains. This intersection represents only a fraction

of either system as shown in Figure 2.12.

As these two cases illustrate, the same conceptual CAE/CAD/CAM
data is represented in a variety of ways on different systems. The number
of systems is increasing. In fact, it is quite difficult to list all of the com-
mercial CAE/CAD/CAM systems. Adding to the complexity of the prob-
fem are custom, in-house systems which many electronics firms have

developed to meet their special requirements.
2.5 CAE/CAD/CAM Data Exchange Standards

Because the data transport problem is pervasive and wide-spread, a
number of attempts have been made to standardize on neutral data base
formats. However, these data standards do not completely address the
data transport problem. The job of translating data to and from a stan-
dard is left up to the originator and receiver of the CAE/CAD/CAM data
format being transported. The problem of what to do with data which

cannot be expressed in the standard is not addressed.

Among the attempts at standardization are the Initial Graphics Ex-
change Specification (IGES), ANSI/IPC-D-350, and most recently the Elec-
tronic Design Interchange Format (EDIF). The preface to the EDIF
specification [EDIF84] identifies the problems encountered by those at-

tempting to define a standard:

"While many interchange formats and hardware description
languages have been developed over the past decode, each has
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suffered from one or more of the following drawbacks:
Narrow focus, ...
Proprietary, ...
Difficult to Implement, ...
Difficult to Extend, ..."
A brief description of these standards will bring to light these drawbacks

and illustrate others as well.
2.5.1 Initial Graphics Exchange Specification (IGES)

The formulation of IGES dates back to late 1879. The first IGES
concepts stemmed from a joint meeting of the Air Force, Army, Navy, and
the National Bureau of Standards (NBS) held at the National Academy of
Sciences on October 11, 1979. Presentations by CAD/CAM systems ven-
dors, corporate systems designers, and standards groups pointed to prob-
lem in data transport between CAD/CAM systems. At this time and since
then, the emphasis has been on 3D graphics CAD/CAM systems for
mechanical design. It was generally agreed that an initial graphies ex-

change specification was needed immediately. [IGES80]

Later in 1979, a committee was formed between representatives from
the NBS, Boeing, and General Electric. The Boeing and General Electric
corporate CAD/CAM exchange systems were selected as initial systems
upon which IGES was formed. Subsequent to its first release, IGES be-
came an ANSI standard (ANSI Y14.26M-1981) issued on Aprii 15, 1982.

Due to the rapid formulation of IGES, several misconceptions about
the intent of IGES developed even prior to its first release. In an attempt
to clarify IGES, the technical committee offered a list of statements

describing IGES in the Introduction of the first release. Several of these
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statements point to inherent limitations built into the standard:

. IGES is designed with the technical aspects of several
CAE/CAD/CAM systems in mind. Thus the translation from
vendor systems to IGES and vice versa will not be one for

one, but should be feasible.

. IGES is not a complete spec of all the data in all
CAE/CAD/CAM systems. Thus, there may be a loss of data
or structural information in the translation to and from

IGES.

e IGES is based on the Boeing CAD/CAM Integrated Informa-
tion Network, the General Electric Neutral Data Base, and a
variety of other data exchange formats which were given to

the committee.

. IGES is éhe best specification that could be produced in the
time frame permitted. While it is not a copy of any of the
exchange formats presented to the committee, it has the ad-
vantage of the experience and knowledge gained in their pro-

duction and use.

) IGES is a set of geometrical, drafting, structural, and other
entities. Thus it has the capability to represent a majority of

the information in CAD/CAM systems.

° IGES is extensible. Several definition mechanisms have been

provided to permit IGES to be expandable. A working com-
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mittee has been set up to coordinate expansions and to

correct errors.

° IGES is not designed for the technical aspects of any one of

the currently available CAD/CAM systems.

e IGES is not perfect, or the solution to all data exchange prob-

lems between CAD/CAM systems.

° IGES is not a carbon copy of any of the exchange formats

given to the technical committce.
It is clear, that the committee was attempting to deliver a spec in a short
time-frame, and that they hoped to provide an extensible framework which

would allow future additions to cover any initial shortcomings.

The initial format of an IGES file was a numerically sequenced set of
80-column card images in ASCIH. As would be expected with graphics data
bases, this file format resulted in very large IGES files. This problem
resulted in the second release of IGES including an optional binary
representation of an IGES file. The structure of the binary format is

essentially the same as the ASCII format.

An IGES file consist of 5 sections: Start Section, Global Section,
Directory Entry Section, Parameter Data Section, and Terminate Section.
The Start Section contains comments about the IGES file and the part
represented. The Global Section describes machine dependent characteris-
tics used in an IGES file, various global delimiters, and units. The Directo-
ry Entry Section contains entity descriptions and pointers to parameters,

other entities, line fonts, levels, views, translation/rotation matrices, status
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flags. Entities are of three categories:
° Geometry: Circles, Lines, Conics, Points, etc.
° Annotation: Dimensions, Notes, Arrows, Witness Lines

® Structure: Associativity, Line Font, Macro, Subfigure, Text

Font, Drawing, Property, and View.
The Parameter Data Section contains end points, transformation matrix
values, angles, and pointers. In general, all parametric data needed to
describe entities defined in the Directory Entity section is contained in the
Parameter Data section. The Terminate Section contains the card counts
for each section and serves as a checksum of sorts to verify that the file has

been transmitted properly.

While the basie structure of an IGES file doesn't appear too compli-
cated, there are 20 gcometric entities, 13 annotation entities, 12 structural
entities, plus a macro capability. The majority of the entities (> 75%) are
geared for the mechanical CAD/CAM field, where the emphasis has been
since the early days of the IGES inception. The specification as issued
(both versions 1.0 and 2.0) gives only one, incomplete example of how IGES
is applied to electronic CAD/CAM systems. Much of IGES is oriented to-
ward describing drawings and not to describing the content of the draw-
ings. There is virtually no support for CAE data used in simulation and

analysis models. Presumably, CAE is treated as a user extension.

There is an IGES subcommittee which has been actively addressing
extending IGES for electronics data as recently as February 1984. Working

documents and meeting minutes indicate that there are shortcomings in

36



IGES version 2.0 which could be resolved in a number of ways, including
adding more entities to describe schematics. It appears that no single ap-

proach has been approved and that further committee discussion is re-

quired.

As regards the integration of IGES with other standards, the IGES
Electrical/Electronic Subcommittee is aware of the existence of
ANSI/IPC-D-350. In February 1984, the Subcommittee suggested that the
IPC standard should be regarded as any other vendor. (¥ Also, it was sug-
gested that IGES should consider its role as a super-set of CAD/CAM
data (including IPC). At the other extreme, there seems to be no formal
or informal recognrition of EDIF by the IGES Subcommittee to date. The
EDIF effort began in late 1983 with the 0.8 version of the specification be-
ing released May 14, 1984 and version 0.9 on July 16, 1984.

Aside from the lack of development in the area of electronic design
data, there are a number of other IGES deficiencies. Scowen [Scow82] indi-
cates a fundamental problem with all systems which are based upon the
transfer of drafting data. The information defines drawings of a produect
and not the product itsell. Scowen argues that the "full benefits" of a
standard can be realized only

"by complete integration based on a model of the product it-
self rather than a model of drawings of the product.”

(22) Unpublished minutes of the IGES Electrical/Electronic
Subcommittee Meeting of February 9, 1984.
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Another problem Scowen identified is that some objects can be
represented in several ways in IGES. For example, a rectangle may be a
composite curve, a bounded plane, or a subfigure. The lack of a canonical
representation for objects leads to difficulty in translating data to another
system and then back again. In fact, it is difficult to check whether two

IGES files are equivalent and describe the same object.

An early criticism of IGES was that IGES files were large. This was
to a large extent a problem with the ASCII 80-column card image format.
With version 2.0, IGES now has a binary format as well. Another problem
with the IGES file format is that there is no facility for making easy correc-
tions since all internal pointers are absolute. Consequently, if a change
needs to be made to a design, a new [GES file must be written. If an IGES
translator is expensive to run (which is likely), then the purpose of facili-

tating data transport is defeated.

It is clear that while [GES is a tremendous accomplishment, it is not

2 panacea.
2.5.2 ANSI/IPC-D-350

The purpose of the ANSI/IPC-D-350 [IPC77] standard is to provide
a uniform means of describing printed wiring boards in a digital (80-
column card) form. All aspects of printed wiring board designs can be do-
cumented using this standard including copper type, dielectric used, plat-
ing thickness, locations of lines, line widths, orthogonality restrictions,

pads, drill holes, and layering schemes.
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An IPC file contains 5 sections: Parameter Records, Comment
Records, Feature/Location Records, Complex or Composite Records, and
an End of Job Record. Parameter records include JOB, DIM, UNITS,
TOL, LAYER, and IMAGE records which describe global values needed to

interpret the IPC file. Within the comment record are included
° List of Features,

o Finished part descriptions - fabrication materials and special

instructions,
) Line Record ldentification - structure of line records, and

) References to specification documents.
The Feature/Locations records use a pseudo-assembler language to

describe

° Op codes for continuation records, line records, point records,

and annotation or lettering records;

. Features Description Areas which depend upon the op-code
but include dimensions, layer codes, signal identification, hole

size, annotation character height; and

° Location Description Areas which contains x-y data.
The Complex or Composites records contain op-codes for subroutine

definitions and subroutine calls.

While the IPC standard is comprehensive in its trcatment of PC

board related data, the bulk of the electronic CAE/CAD data is not
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covered by intent. Thus, this standard suffers from the "Narrow focus’
drawback identified by the EDIF formulating Committee, although
ANSI/IPC 350B was not specifically referenced.

2.5.3 Electronic Design Interchange Format (EDIF)

This format is the newest attempt to develop a universally accept-
able standard for the transport of clectronic design data. As indicated at
the beginning of this section on data standards, EDIF was undertaken be-
cause shortcomings were perceived with all previous efforts. Several prede-
cessors were mentioned by name, but IGES wasn't included. It is unlikely
that IGES would be unknown to a committee with CAE/CAD/CAM sys-
tem houses represented. It can only be assumed that the IGES effort in
the area of electronic data is not regarded to be of importance to the EDIF

committee.

The version 0.9 EDIF is quite comprehensive in its inclusion of all
classes of electronic design data. The classes described in section 2.4 are
addressed and to a more extensive level of detail in EDIF. The basic ele-
ment of design is the "cell”. Several "views" of a cell provide data regard-
ing the schematic, symbolic layout, masks, behavior, and documentation.

Provisions are mode for cell libraries and multiple technologies.

From a structural point of view, the EDIF file i1s expressed in LISP.
Provisions are included for defining variables and macros, as well as condi-

tionals. The EDIF syntax is quite extensible and allows for growth.
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EDIF is oriented toward gate arrays and custom VLSI designs and
provides for CAE as well as CAD/CAM data. However, some of the CAE
data (e.g., simulation models) are expressed as comments. Clearly, EDIF is
new and there are a number of features which are only developed
superficially (e.g., the documentation view). Also, there have been 2

number of criticisms about some of the features of EDIF.

The source of the criticisms are the minutes of the July 16, 1984
public meeting on EDIF. Some have objected to the LISP syntax for
efficiency reasons. The gate array description features of EDIF are unclear
and confusing. The number of Test States is inadequate. The Behavioral
description lacks power. There are weaknesses in the mapping among the
logical, physical, and behavioral interfaces. In some cases information is
duplicated as in the redundant definition of ports between views. There
are other minor and subtle flaws which were discussed at the meeting. The
intent of the discussion was to identify problems which need correction be-

fore the version 1.0 EDIF is released.

Because the EDIF effort is new, the issue of what to do in cases
when data cannot be represented in EDIF has not really been discussed.
The assumption made by the committee is that the user extension feature

will cover these cases.
2.5.4 Commercial Systems

In addition to standards which are provided to assist in data tran-
sport, there has been at least one commercial offering. Octal, Inc. of Moun-

tain View, CA announced as early as October 1981 a product which con-
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verts CALMA drawing data bases into Applicon data bases. That particu-
lar system was reported (23) to log components of the data base which were

“not exactly converted” due to differences in data representation.

Again as in the case of data standards, the problem of data which
doesn’t translate is acknowledged, but no obvious treatment prescribed.
This problem among others is described in the next chapter and a metho-

dology for CAE/CAD/CAM data transport is presented.

(23) The Harvard Newsletter on Computer Graphics -- Vol. 3,
No. 20 - October 19, 1981.



CHAPTER 3
DATA TRANSPORT METHODOLOGY

The limitations in the present data exchange standards and in com-
mercial translation software underscore the difficulty in solving- the
CAD/CAM data transport problem. There are several obstacles to be

overcome in providing a data path between CAD/CAM systems.
3.1 Media Difficulties

Since each CAD/CAM system usually resides on a different comput-
er system, data must be transported between computer systems. Disks are
problematic since there are several format standards. Also, not all systems
have a removable disk media. Punched cards are cumbersome and outdat-
ed; many modern computer systems do not handle punched cards. A third
option would be to use networks. This is by far the most direct method,
but as with disks, there are many network standards. Not all computer
systems have compatible network interfaces with other vendor computer
systems. The final option is to use magnetic tape. While there are a
variety of tape formats and densities, most candidate systems support in-

dustry compatible format tapes.
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3.2 Differences in Electronic Design Data Representation

While there is, in theory, commonality across systems which perform
the same CAD/CAM function, electronic design attributes are represented
differently in different CAD/CAM systems. The design attributes describe
all aspects of the electronic system to he developed. As described in sec-
tion 2.4, this data can be categorized as logical, physical, electrical, ther-
mal, or timing-related. Examples of attributes with differing representa-
tions are logical pin names and functions, the names of logical elements
and signals, and generic component types. Specific cases of differing

representation were presented in section 2.4.
The Delta Problemn

Also, in comparing any two similar CAD/CAM systems, there is usu-
ally data which is stored in one system without counterpart (in any for-
mat) in the other system. We can refer to this anomaly as the “"delta"
problem (delta, meaning difference). This problem is not easily solved and
has been often overlooked in translators to date. Consider the scenario
represented in Figure 3.1. As this example shows, sometimes
CAE/CAD/CAM data needs to be transported from system A to B and
then back again to system A. When this is done, it is important that data
relationships not be lost. If a given data element D, is related to Dy in
system A, Ry (D},Dy), and Dy cannot be translated to system B, then we
need to store the relationship Ry (D;,Dy), separately, before translating.
Upon return from system B, item Dy should again be associated with item

D according to Ry (D,Ds).
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Figure 3.1. The Delts Problem.

45




This problem is not straight-forward since once data is sent to sys-
tem B from system A, it may be operated upon, resulting in D; being
deleted or changed. Consequently, it is not obvious what meaning does
Rp(D{,Dg) have when the database is transported back from system B to
A.

An example of the delta problem was shown graphically in Figure
2.12, which compares the data elements of the Computervision system with
the Hughes PWB CAD system. This problem will be addressed again in

Chapter 5 when actual transport test cases are presented.
3.3 Database Organization Differences

Another problem is that each CAD/CAM system has a unique sche-
ma or organization for design databases. Conventional data base theory
[Date82] has defined 3 basic schema types: the hierarchical, network, and
relational models. The hierarchical model is represented in Figure 3.2.
Each node has exactly one parent (except the top or root node) and may
have zero or more child nodes. The network model resembles a graph (Fig-
ure 3.3} and is less restrictive than the hierarchical model. The relational
model takes a different view of data. Data is organized into tables with
columns which represent different data types and rows which contain in-

stances (or -tuples) of data (see Figure 3.4).

In addition to these basic schema types, there are other database or-
ganizations. In fact, CAE/CAD/CAM system vendors often use the term
data base when, in reality, the correct term would be file . Consequently,

there exist a multitude of custom data base types in this field. Further-
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more, each of these models can be implemented (i.e., physically stored) in
a variety of ways. This variety adds to the problem of data base transport

between distinct CAE/CAD/CAM system types.

Also, the complete semantics or meaning of a data base is not al-
ways represented in just the data model alone. Consider an example based
upon the relational data model. Figure 2.4 showed a sample schematic di-
agram. A non-normalized relational data base representing this informa-
tion is shown in Figure 2.8. One important constraint on schematic data is
that no two signals be tied (shorted) together. This restriction is referred
to as an sntegrily constraint . In terms of the relational data base (Figure
2.8}, it means that no two rows can have the same values for CN (com-
ponent name) and CP (component pin} and have different values for S (sig-
nal). There is no provision for storing this constraint in the relational data
base management system (DBMS), but it is still a part of this data base's
semantics. To overcome this inadequacy in many DBMS’s, a data base
verification program is written to insure that the data complies with all in-
tegrity constraints. Following updates to the data base, the verification

program is executed to determine if integrity violations exist.

To show how the same conceptual information is represented
differently on different systems, consider two examples: 1) logic intercon-
nection databases in both the Hughes Aircraft CAD system and Computer-
vision, and 2) layout databases in both the Hughes CAD system and the
CALMA system.
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Hughes CAD System Build-Design Database [Wong79]. This data-
base describes both the logical and physical data associated with a logic
network and its printed circuit board (PCB) implementation. This is
essentially a relational data model. This CAD systems runs on a

DECsystem-20 using the System 1022™ database management system.

Computervision Schematic Database [CVPC83, CVDBS83]. Like the
Hughes Build Design Database, this database describes the logical and phy-
sical data associated with a circuit. However, unlike the Build Design Da-
tabase this database also includes graphic schematic information. All com-
ponents used in the circuit are represented in terms of graphic elements
(e.g., line segments, arcs, circles). Signals represent not only named inter-
connections between component pins, but also lines which appear on the
schematic. This database uses a hierarchical model with all of the logic

network data intermingled with the graphic data.

Hughes CAD PCB Layout Data [Wong79]. The layout data for the
CAD PCB system consists of a matrix representing grid points in both =z
and y dimension of the printed circuit board. For each grid point, there is
an indicator designating whether that grid point contains etch, a via, a
drill hole, or is vacant. There is a third dimension to the matrix represent-
ing the layer of the printed circuit board. A board measuring 5" x 9" with
a 50 mil grid would have 100 (=5/.05) by 180 (=9/.05) elements in its ma-

trix representation.

CALMA IC Layout Data [CALM82]. Unlike the Hughes PCB Layout
matrix, the CALMA IC layout representation uses rectangular boundaries

and paths to describe the layout pattern. Interconnections are represented
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as paths; vias, pads, or vacant regions are represented as boundaries. This
database stores actual coordinate endpoints for these geometric entities;
essentially a vector representation. The Hughes PCB Layout database, on
the other hand, uses a pixel or raster data representation to store the lay-

out patterns.
3.4 General Approach

It has been shown that the CAE/CAD/CAM data transport problem
consists of transport media difficulties, difficulties arising from differences
in data representation, and difficulties due to data base organization
differences. In order to overcome these difficulties, several elements in a

transport methodology are necessary:
. media conversion,
° database intermediate format (DBIF),
° compilers/formatters,
e  generic/neutral data base, and
. a translation mechanism.

Basically, the problem can be approached by providing mechanisms for 1)
translating the various formats into a standard format and 2) translating
between different sets of data base content, each represented in standard

form.



Conventional translations schemes have been implemented with pro-
cedural languages. Consequently, they were cumbersome to produce the
first time and difficult to change. This is because much of the knowledge
of how to translate between data bases is embedded into procedural
language statements which must be re-coded, often affecting the logic flow
of the program as well. An alternative translation scheme is a knowledge-

based systems (KBS) approach.

This approach is also referred to as an expert systems approach.
Both terms apply equally, but KBS emphasizes the collection of rules and
the architecture of the system. Ezpert systems emphasizes the fact that
the content of the knowledge base is obtained from experts who are very
familiar with the problem area. This dissertation emphasizes the architec-
tural approach of the prototype system, therefore the IKBS designation has
been used. The complexity of the subject data also suggests that the
methodology could be described as an expert system. Henceforth, the sys-

tem and methodology will be referred to as a knowledge-based system.

A  knowledge-based system differs from conventional procedural
systems in that the algorithm for performing a task is characterized by a
database of knowledge rather than by procedural statements. Using a
KBS the procedure is to apply knowledge in the forms of rules or
assertions (e.g., "If x then y") and to produce the desired results by
inference. There are numerous references on the subject of knowledge-

based systems (KBS) [McCa83, Wood83, Brac83a, Brac83b, Mylc83].

53



A knowledge-based systems approach to the data transport problem

improves most elements of the transport methodology.

Media conversion. This is the very basic problem of overcoming
computer word length differences, 7-bit ASCII, 8-bit ASCII, and EBCDIC
character code conversions, magnetic tape formats, etc. While it is neces-
sary that this problem be addressed, it has been solved routinely in the

past. This subject will therefore not be addressed in this dissertation.

Database intermediate format (DBIF). Assuming that the media
conversion problem has been addressed, a common format is necessary so
that when data base content (including logic schema, integrity constraints,
etc.) is translated it can be accomplished without regard for format
differences. There are many possible formats which could be used as the
DBIF. For example, a relational data base could be used for this purpose.
For each CAD/CAM data base type there would be a set of relations which
would constitute its DBIF representation. The DBIF content (e.g., relation
domains, number of tuples, etc.) would be different for each CAD/CAM
data base type. The translation between CAD/CAM database types would
require rules which transform one set of relations into another. Having each
data base represented in DBIF {in this case, a set of relations), translations
would be performed independent of specific CAD/CAM database formats.
Figure 3.5 illustrates the use of the DBIF as an intermediate translation
step. In translating from data base type 1 to data base type 2, first type 1
is converted into DBIF 1. Next, a generic translation engine is used to
translate from DBIF 1 into a generic DBIF and then into DBIF 2. Then,

DBIF 2 is converted into native data base type 2 format. In a like manner,
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Figure 3.5. Use of DBIF as an Intermediate
Format For Data Transport.
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data base type 3 can be transformed into data base type 4, and type 5 to
6.

Of course, a relational data base is only one possible DBIF candi-
date. There are a number of other potential DBII"'s: for example, a neutral
language or other common data base format. Using a knowledge-based ap-
proach, the DBIF would consist of facts which express the data base con-
tent. The syntax of the knowledge base depends upon the particular

translation mechanism and its preferred input/output format.

Compilers/formatters. Compilers are necessary to translate
CAD/CAM data bases from their native form into DBIF. Likewise, for-
matters take data in DBIF and repackage it into a native CAD/CAM data
base format. For each CAD/CAM database type, only one compiler and

one formatter needs to be generated. @1

Working in conjunction with compilers and [formatters, a
CAE/CAD/CAM data description language can be used to provide
language-specific information. This can be used to identify where in a
CAE/CAD/CAM database a particular data element is found. A general
compiler might be written which maps data between a native format (after
media conversion) and DBIF using the CAD/CAM data language descrip-
tion of the native format. Similarly, a formatter can identify where a DBIF
item belongs in a native format using the CAE/CAD/CAM data descrip-

tion language.

(3-1) This is very similar to the idea behind 1GES.
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A knowledge-based approach to compilation has been tried with
great success in the field of natural language understanding. Webber
[Webb83] has shown how logic and deduction are applied to this field.
Similarly for CAE/CAD/CAM data languages, syntax and semantic rules
can be expressed in terms of logic predicates. These rules are then used
by the compiler. Further examples of the techniques are given by Dahl
[Dahl&3] who has shown how a knowledge base and logic programming can

be used for language processing (both French and Spanish).

Furthermore, a KBS approach allows the validity of a data base to
be checked by comparing it against a model (schema) expressed in terms
of logic predicates and their relationships. To see how a CAD data base
can be modeled in terms of logic predicates, we shall consider below the

schematic data base represented by the network in Figure 3.6
CAD Data Base Modeling and Representation

This simple network consists of four components A, B, C, and C1 of
types T1, T2, T2, and CONNECTOR. Seven signals S1-S7 connect the
components. Component type T1 has nodes R, S, Q, and QN. Component
type T2 has pins (or nodes) I1, 12, and Y. The connector has pins [1-I3,
O1, and O2. Two possible native representations of the network are 1) a
relational data base and 2) a hardware description language (HDL) encod-
ing. (see Figures 3.7 and 3.8 respectively). Call these two data representa-

tions DR1 and DR2.

Using the Entity-Link-Key-Attribute (ELKA) [Rodr81] information
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SIGNAL COMPONENT COMPONENT PIN

NAME TYPE
Sl A T1 R
S1 Cl CONNECTOR Il
Se A T1 S
S2 Cl CONNECTOR 12
S3 Cl CONNECTOR I3
S3 B T2 12
S4 A T1 Q
34 C T2 11
S5 A Tl QN
S5 B T2 Il
S5 C T2 12
Sb C T2 Y
Sb Cl CONNECTOR Ol
S7 B T2 Y
S7 Cl CONNECTOR 02

Figure 3.7. Data Base Representation ! (DR1).
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BODIES

BODY A

TYPETI

NCODER (1,9)

NODE S (1.8)

NODE Q (2,9)

NODE QN (2.8)
BODY B

TYPE T2

NODE I1 (3.4)

NODE 12 (3.2)

NODE Y (4.3)
BODY C

TYPE T2

NODE 11 (5.8)

NODE 12 (5.6)

NODE Y (6.7)

SIGNALS

SIGNAL St (0,9). (1.9)
SIGNAL S2 (0.8). (1.8)
SIGNAL S3 (1.2). (3.2)
SIGNAL 54 (2.9), (5.8)
SIGNAL S5 (2.8). (2.5,6). (5.6), (3.4}
SIGNAL S6 (6,7). {7.7)
SIGNAL 57 (4,3). (7.3)

Figure 3.8. Data Base Representation
2 (DR2).
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model 2} the semantics of this data (i.e., the schema) can be represented
by the diagram shown in Figure 3.9. The entity classes defined are: SIG-
NAL, COMPONENT, PIN-INSTANCE, PIN, and TYPE. The attribute
classes are “signalName", "compName", "compType", and "pinName"
Note that some of the attribute classes are underlined. These correspond
to the key classes for the entity classes in which they are contained. The
links in this diagram are of two types, strong many-to-one (m-to-1) and
many-to-one (m-to-1) links. These links are depicted graphically by a line
joining two entity classes with a diamond on one end. The front of the
link is the end without the diamond and the back is the end with the dia-

mond.

The strong m-to-1 links (those with a solid diamond ) indicate that
for every member of the back entity class there exists exactly one member
of the front entity class. Also, for every member of the front entity class,
there exists one or more members of the back entity class. The m-to-1 link
(with the un-filled diamond) is like the strong m-to-1 link except that in an
m-to-1 link, for every member of the front entity class there maybe zero,

one, or more members of the back entity class.

For each representation, the essential data elements and their rela-
tionships can be expressed in terms of logic predicates or statements. As

Figures 3.7 and 3.9 indicate, for DRI, the following statements hold:

(32) The ELKA model was used extensively at Hughes for the
US Department of Defense VHSIC program. Specifically, all
of the data handled by the Hughes-developed VHSIC CAD
system, called HERCULES, was modeled using the ELIKA

technique.
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signalName

SIGNAL
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compName , compType

COMPONENT
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PIN-INSTANCE
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pinName ,compType compType
° khea
PIN TYPE
Figure 3.9. ELKA Diagram for the DR1 Sample

Schematic Information Model.
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1. If Xis asignal, then X connects one or more pin instances.

2. If X is a pin instance, then X is connected by one and only

one signal.

3. If X is a component name, then X has one or more pin in-

stances.

4. If X is a pin instance, then there is one and only one com-

ponent name which has X.
5. I X is a component type, then X has one or more pins.

6. If X is a pin, then there is one and only one component type

which has X.

7. If X is a component type, then X has zero or more instances

of component name.

8. If X is a component name, then there is one and only one

component type which has the instance X.

9. If X is a pin, then there are zero or more pin instances where
X is used. If X is a pin instance, then there is one and only

one pin which is used as X.
This information model for schematic data has been simplified to illustrate
the point that a CAD data base can be characterized in terms of logic
predicates. This will prove useful in Chapter 4 when a more realistic

schematic data model is presented.
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In a like manner, the data elements for DR2 and their relationships
can be modeled as shown in Figure 3.10. Information Model."” In this case,
the entity classes are: BODY, TYPE, NODE, VERTEX, and SIGNAL. The
attribute classes are "bName", "bType", "nName", "vtx", and "sigName".
As in the previous ELKA diagram, the underlined attribute classes are
also key classes. The links in this diagram are strong m-to-1, m-to-1, or
1-to-1 links. A 1-to-1 link indicates that for every member of the back en-
tity class, there exists exactly one member of the front entity class. And,

for every member of the front entity class there exists zero or one member

of the back entity class.

As Figures 3.8 and 3.10 indicate, for DR2, the following statements
hold:

I. If X is a body, then X has one or more nodes.

34

If X is a node, then there is exactly one body which has X.
3. If X'is a body type, then X has zero or more body instances.

4. If X is a body, then there is exactly one body type which has

instance X.

5. If X is a node, then there is exactly one vertex which locates

X.

6. If X is a vertex, then there is zero or one node which is locat-

ed by X.

7. If X is a signal, then there are one or more vertices connected
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bName, bType <> hes-inelanss btype
BODY ) TYPE
hes
nName , bName , vtx
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Q EARRCELS8
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Figure 3.10. ELKA Diagram for the DR2 Sample

Schematic Information Model.
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by X.

8. If X is a vertex, then there is exactly one signal which con-

nects to X.

Although these logic assertions contain the necessary information, it
is clear that they must be expressed in a more concise and regular format

in order to be useful.

Generic/neulral data schema. Assuming that all data can be com-
piled into a DBIF representation, a master data schema is needed to
represent a superset of all of the CAD/CAM data bases to be transferred.
The schema needs to include each category of CAD/CAM data: logical,
physical, electrical, thermal, and timing. Data from each native system is
first compiled into its DBIF and then it is translated according to the mas-
ter data schema into a generic DBIF. The rationale for the generic schema
is so that for each native format only two translators are needed: one from
the native format into the generic schema and one hack from the generic
schema into the native format. Without a generic schema, point-to-point
translators would be needed between pair of native formats. For a collee-
tion of N native systems, 25™") translators nced to be written (see Figure
3.11a). Using the generic schema, only 2N translators need to be written.
This corresponds to a "star” configuration (see I'igure 3.11b).

4
For a five system collection this is a difference between 20 (=2*L . )

i=1
translators and 10 (=2%*5) translators. An additional advantage is gained
when a native format changes. Without a generic schema, N-1 translators

are affected. With a generic schema, only 2 translators need to be changed.
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23! 2N

ogure 3 - Figure 3.1 1b. Star
onL-to-Toin Configuration.

Configuration.

Alternative Translation Schemes.

Number of Generic Data Schema
Systems With ¥Without
3 6 6
4 8 12
5 10 20
6 12 30
7 14 42

Figure 3.12. Translators Needed Using a
Generic Data Schema.
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Figure 3.12 shows how this difference varies with the number of systems

sharing data.

Assuming a generic data schema is used, it can be represented as a

set of rules in a knowledge base just as native CAIS/CAD/CAM data bases

are described.

Translation Mechanism. While several methods can be used to
translate CAE/CAD/CAM data content, a knowledge-based approach
offers more flexibility and generality. Returning to the sample schematic
network and DR1 and DR2, a translation scenario shows how rules can be
used to transform data between different representations. This translation
was developed manually to understand the algorithmic steps. In Chapter
4, a similar automatic translation is introduced. Assume that the sample
schematic network of Figure 3.6 is to be translated from DR2 into DRI.

The sfeps in this process are
1. Compile the native DR2 into DBIF.
2. Prepare DR2 to generic translation rules (input rules).
3. Prepare generic to DRI translation rules (output rules).
4.  Translate DR2 into generic data.
5.  Translate Generic into DR1 data.
6. Format the resulting DR1 DBIF into DRI native form.

These steps are described in more detail in the next section {3.5) and they

are illustrated in Figure 3.15. To give a more thorough understanding of
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these steps, the following DR2 to DR1 transport scenario is provided.

Figure 3.13 shows the DR2 data encoded in a DBIF, consisting of
factual statements. (Note that each input fact is numbered Iz for future
reference). The "TYPE" information (Figure 3.8} has been omitted in this

example to simplify the explanation.

In order to be able to translate this data info an alternate represen-
tation, it is important that it be defined in terms of the generic data sche-
ma. The following is a set of assertions which translate DR2 into the gen-
eric data schema along with the previous set of rules which operate with

DRI1.

R1. Xis a DR2 body if X is a generic box.

R2. X is a generic box if X is a DR2 body.

R3. Xis a DR2 node if X is a generic node.

R4. X is a generic node if is a DR2 node.

R5. X is a DR2 signal if X is a generic net.

R6. X is a generic net if X is a DR2 signal.

R7. X is a DR1 signal if X is a generic net.

R8. X is a generic net if X is a DR1 signal.

R9. X is a DRI pin if X is a generic node.

R10. X is a generic node if X is a DR1 pin.

R11. X is a DR1 compname if X is a generic box.

R12. X is a generic box if X is a DR1 compname.

R13. X conneets Y if X has vertex (A,B), Y has vertex (4,B),
and X is a DR2 signal.
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1. Aisadrl body. 129. C is a dr2 node.
I2. AhasR. 130. C.I2 has vertex (5,6).
I3. Ris a dr2 node. [31. B has C.Y
I4. R has vertex (1,9). 132. C is a dr2 node.
I5. A hasS§. 133. C.Y has vertex (6,7).
I6. Sis a dr2 node. I34. S1 is a dr2 signal.
I7. S has vertex (1,8). I35. S1 has vertex (0,9).
I8. A has Q. 136. S1 has vertex (1,9).
19. Qis a dr2 node. 137. S2 is a dr2 signal.
110. Q has vertex (2,9). 138. S3 is a dr2 signal.
I11. A has QN. 139. S4 is a dr2 signal.
2. QN is a dr2 node. 140. S5 is a dr2 signal.
I13. QN has vertex(2,8). I41. S6 is a dr2 signal.
I14. B is a dr2 body. 142. S7 is a dr2 signal.
I15. B has B.I1 143. S2 has vertex (0,8).
I16. B is a dr2 node. [44. S2 has vertex (1,8).
I17. B.I1 has vertex (3,4). [45. S3 has vertex (1,2).
I18. B has B.I2 [46. S3 has vertex (3,2).
I19. B is a dr2 node. 147. 54 has vertex (2,9).
120. B.I2 has vertex (3,2). [48. S4 has vertex (5,8).
I121. B has B.Y 149. 55 has vertex (2,8).
[22. B is a dr2 node, 150. §5 has vertex (2.5,6).
[123. B.Y has vertex (4,3). I51. S5 has vertex (5,6).
124. C is a dr2 body. [52. 55 has vertex (3,4).
125. B has C.I1 [53. 86 has vertex (6,7).
126. C is a dr2 node. 154. S6 has vertex (7,7).
127. C.I1 has vertex (5,8). I55. S7 has vertex (4,3).
128. B has C.12 156. S7 has vertex (6,3).
Figure 3.13. DBIF Encoding of DR2 Data.

Now translation can occur using the input data encoded in DBIF
and the translation rules. The following notation represents an output
transaction "Oz" as a result of rules being applied to input record z, denot-

ed "Iz". The arrow indicates results in. "Rz" means rule z. So,
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I5 — R3: fido is a dog. — R10: fido is an

animal.

says that by applying rule 3 to Input record 5, results in "fido is a dog."

And, that by subsequently applying rule 10, "fido is a animal.” is obtained.

The

following example shows the translation process. The rules re-

garding DR1 and DR2 are applied until the facts of Figure 3.13 result in a

new set of

of DR2.

O1:

03:

04:
05:
06:
o7:
08:
09:
010
011
012

013
014

facts (below) which have DR1 specified, where possible, instead

Il = R2: A is a generic box.

— R11: A is a DR1 component name.

: [2 = no rule (NR): A has R

I3 — R4: R is a generic node.
— R9: R is a DR1 pin.

[4 — R13(134,136): S1 connects R.
I5 — NR: A has S.
I6 — R4: S is a generic node. — R9: S is a DR1 pin.
I7 — R13(137,144): S2 connects S
I8 — NR: A has Q.
I19 — R4: Q is a generic node. — R%: Q is a DR1 pin.
: 110 — R13(139,147): S4 connects Q.
: 111 — NR: A has QN
: [12 — R4: QN is a generic node.

— R9: QN is a drl.pin.
: 113 — R13(140,149): S5 connects QN.
: 114 — RY: B is a box.
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Ot5:
016:

017:
0O18:
019:

— R18: Bis a DR1 compname.
I15 — no rule (NR): B has B.l1
[16 — R4: B.I1 is a generic node.

— R9: B.I1 is a DRR1 pin.
[17 — R13(140,152): S5 connects B.I1.
118 — NR: B has B.I2
[19 — R4: B.I2 is a generic node.

— R9: B.I2 is a DRI pin.

: 120 — R13(I38,146): S3 connects B.I2.
: 121 — NR: B has B.Y
: 122 — R4: B.Y is a generic node.

— R9: B.Y is a DR1 pin.

: 123 — R13(I42,155): S7 connects B.Y.
: 124 — R9: C is a box.

— R18: C is 2 DR1 compname.

: 125 — NR: C has C.11

: 126 — R4: C.I1 is a generic node.

— R9: C.I1 is a DR1 pin.

: 127 — R13(139,148): S4 connects C.I1.
: 128 — NR: C has C.I2

: 129 — R4: C.12 is a generic node.

— R9: C.12 is a DR1 pin.

: 130 — R13(I40,I51): S5 connects C.12.
: 181 — NR: C has C.Y
: 132 — R4: C.Y is a generic node.

— R9: C.Y is a DR1 pin.



033: 133 — R13(I41,155}: S6 connects C.Y.

034: 134 — R6: Sl is a generic net.
— R7: S1 is a DR1 signal.

035: 135 — NR: S1 has vertex (0,9).

036: see O4

037: I37 — R6: S2 is a generic net.
— R7: S2 is 2 DR1 signal.

038: 138 — R6: S3 is a gencric net.
— R7: 83 is a DR1 signal.

039: 139 — R6: S4 is a generic net.
— R7: S4 is a DR1 signal.

040: 110 — RG6: S5 is a generic net.
— RT7: S5 is a DR1 signal.

O41: 141 — R6: S6 is a generic net.
— R7: S6 is a DR1 signal.

042: 142 — R6: S7 is a generic net.
— R7: 87 is a DR1 signal.

0-13: [43 — NR: S2 has vertex (0,8).

O44: see O7

045: 143 — NR: S3 has vertex (1,2).

046: see 020

047: see O10

048; see 027

049: see O13

050: 150 — NR: S5 has vertex (2.5,6).

051: see O30
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052: see O17
053: see 033
054: 54 — NR: S6 has vertex (7,7).
055: see 023
056: 156 — NR: S7 has vertex (6,3).

A final DR1 representation is obtained from the resulting output
facts. Figure 3.14 shows the relational data base. A few items of note
are that not all facts expressed in DR2 can be translated into DR1 facts.
Specifically 035, 043, 045, 050, O54, and O56 are not expressible in
DR1. This is a case of the delta problem discussed previously. These facts
which do not translate must be saved as part of the resulting DBIF. When
a reverse translation is required, these untranslated facts must be used to
derive the original data representation. A production-quality system needs

to provide this capability.

This example shows the basic technique of using a knowledge base
to perform translation. The six steps described at the beginning of this

example have been executed manually and the desired result obtained.
3.5 System Architecture

The elements needed for data transport can be integrated into a sys-
tem architecture as shown in Figure 3.15. The elements are made up of

both processes and data.
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0z, 04. 01, 03, 034

05, 01, 06, 07, 037

08, 01, 09, 010, 039
011,01,012, 013, 040
014, 015, 016, 017, 040
018, 014, 019, 020, 038
021, 014, 022, 023, 039
024, 025, 026, 027, 039
028, 024, 029, 030, 040
031, 024, 032, 033, 041

unused: 035, 043, 045, 050, 054, 056
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Figure 3.15. System Architecture for Data Transport.

76




3.6.1 Compiler / DBIF

The first step in transporting data between systems is the process of
compiling data from its native (source system) format. This process varies
with each native system. When the source data is in the form of a
language, then a compiler which parses the language and outputs DBIF is
appropriate. A compiler needs to be constructed for each unique type of
native language. Depending on the complexity of the language and the
number of data elements to be recognized by the system, this can be a

time-consuming process.

When the native form of the source data is itself a data base, then
the appropriate data base query language statements can extract the data

and format it into DBIF. This is usually easier than parsing a language.

As described earlier, the DBIF format consists of logical predicates
which assert facts from the data base. The problem with the English-like
logic statements is that they are not easily processed by a translation en-
gine. A more regular syntax for the logic predicates alleviates this
difficulty. Consider the schematic example of Figure 3.6. The DR2
representation of the schematic data can be encoded into DBIF as shown
in Figure 3.16. This exact syntax for DBIF is not important as far as the
system architecture is concerned. The actual implementation of the archi-
tecture into a working system will dictate the exact syntax required for

DBIF.
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SCHEMATIC DATA BASE:

1. compname(A). 29. has(T2,Y).

2. comptype(T1). 30. has{CONN,I1}.

3. compname(B). 31. has(CONN,I2).

4. comptype(T2). 32. has(CONN,I3).

5. compname(C). 33. has(CONN,O1).

6. comptype(T2). 34. has(CONN,02).

7. compname(C1). 35. signal(S1).

8. comptype(CONN). 36. signal(S2).

9. has(A,T1). 37. signal(S3).

10. has(B,T2). 38. signal(S4).

11. has(C,T2). 39. signal(S5).

12. has(C1,CONN). 40. signal(S6).

13. node(R). 41. signal{S7).

14. node(S). 42. connects(S1,C1,11).

15. node(Q). 43. connects{S1,AR).

16. node(QN). 44. connects{S2,C1,12).

17. node(I1). 45. connects{S2,A,S).

18. node(12). 46. connects(S3,C1,13}

19. node(Y). 47. connects(S3 B,[2}.

20. node(13). 48. connects{S1,A,Q)

21. node(O1). 19. connects(S4,C,11).

22, node(O2). 50. connects(S5,A,QN])

23. has(TL,R). 51. connects(S5,C,12).

24. has{T1,S). 52. connects(S5,B,11)

25. has(T1,Q). 53. connects(S6,C1,01).

26. has(T1,QN). 54. connects(S6,C,Y).

27. has(T2,11). 55. connects(S7,C1,02).

28. has(T2,12). 56. connects(S7,B,Y).
Figure 3.16. Sample DBIF Encoding.

3.5.2 Master Data Schema: Generic Predicates

Assuming that all native formats can be translated into the same
DBIF, they will all have similar format, but unique content (i.e., the facts
or predicates will be different), as described in section 3.4. It was shown to

be an advantage, using a generic data schema for translating between N
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unique system types.

There must be a set of generic predicates for cach category of data.
FEach asserts a fact about a data element or facts about data element rela-
tionships. Figures 3.17 and 3.18 show sets of generic predicates for two

categories of data: logical and physical.

One problem that has been encountered by most attempts at a neu-
tral data standard is that not all data elements are included in the stan-
dard. The goal of a standard is to have a superset of all data elements and
data relationships that are encountered in a given category. This is some-
what impractical, since it is difficult to define the universe of all native sys-
tems having a given CAE/CAD/CAM data category. Furthermore, if a
given collection of systems is augmented with a new system at a later time,
then the necutral standard may need to be augmented as well. This is
somewhat self-defeating, since the neutral data format is supposed to
influence the data base definitions for CAE/CAD/CAM systems and not

the other way around.

Rather than attempt to provide a universal, all-encompassing stan-
dard, a reasonable set of generic predicates for each CAE/CAD/CAM data
category is sufficient. If experience indicates that additions should be
made, then the set of generic predicates can be expanded accordingly. But,
the delta problem described in section 3.2 must now be addressed since not
all DBIF constructs from all native systems will be translatable into the

generic DBIF. This is one of the roles of the translate engine
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LOGICAL:
predicate meaning
box(X) X is a component or cell name
box _type(X) X is 2 component or cell type
node(X} X is a node
node _type(X) X is a node type
node__dir(X) X is a node direction
net(X) X is a signal
net_type(X) X is a signal type
has_(X,Y) X has Y or Y is contained in X
connects(X,Y,Z) Signal X is connected to Component Y
at Node Z
Figure 3.17. Generic Predicates for Logical Data.

3.5.3 Translate Engine

Assuming that the various data files shown as inputs into the
translate engine in Figure 3.15 are available, the next step is to translate
one DBIF into another DBIF of similar content. The first step involves
translating the predicates of the source system's DBIF into generic predi-
cates for the type of data to be translated. This requires the source DBIF
and the input rules for the source system. These rules are discussed in the
next section in more detail. An intermediate output of the translation en-

gine is the data content of the source system's DBIF expressed in terms of
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PHYSICAL:
predicate
polygon(X)
wire{X)
macro__def(X)
macro_call(X,N)

scale__(X)
layer _(X,Y)
vertex _(S,X,Y,I)

width _(X,Y)
orient _ (W, X,Y,Z)
has__(X,Y)

magnif _(S,M)

relative_orient(S)

relative__magnif(S)

text(T)

textval (T, Str)
h_just(T,N)
v _just(T,N)

tfont__(T,F)

meaning

X is a polygon
X is a wire

X is a structure or macro

X is a reference or call to macro definition

X is a scaling factor
X has layer Y

S has vertex (X,Y) as its
Ith coordinate

X has width Y

W is rotated X degrees about the x
axis, Y degrees about the Y axis, and Z
degrees about the Z axis.

X has Y or Y is contained in X

Magnification M is applied to the
elements of S

Any orientation specified for S
is relative to the calling frame
of reference (otherwise is is

with respect to absolute zero).

Any magnification specified for S
is relative to the calling macro’s
magnification {otherwise it

is absolute).

T is a text block

Str is the character string
for text block T

N is the horizontal justification
for text block T: left, right, or center.

N is the vertical justification
for text block T: upper, lower, or center.

F is the font type for text
block T

Figure 3.18. Generic Predicates for Physical Data.
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generic predicates. A by-product of the translation is a set of facts which
cannot be translated into generic predicates. These are called kept data
and they must be preserved so that reverse translation at a later time is

possible.

Once the generic facts are available, they are translated into the
destination DBIF using a new set of rules which indicate how to derive the
destination system’s predicates from generic predicates. Again, there may
be facts which cannot be translated from the generic set into the DBIF of
the destination system. These must also be preserved as kept data so that
reverse translation is possible 1) The final output of the translate engine
is the destination system's DBIF and the kept data. The output DBIF is

reformatted for direct use by the destination system.
3.5.4 Rules for Translation: Knowledge Base

In order to perform any translations, a set of rules is necessary
which specify how to interpret predicates from one system to another, in-
cluding the set of generic predicates. These rules constitute a knowledge
base. The knowledge base containing the rules for translation consists of

several parts:

. rules, describing how to express generic predicates in terms of

source predicates,

B 16 is necessary that the existance of kept data be
remembered when the time comes for reverse translation. It
would be possible to insert a flag to this effect into the body
of the output DBIF.



. rules, describing how to express target predicates in terms of

generic predicates, and

. ordered lists of source predicates, target predicates, and gen-
eric predicates.
The knowledge base must contain rules pertaining to each

CAE/CAD/CAM system to be recognized by the data transport system.

The rules are arbitrary in format, and they must be tailored to fit
the CAE/CAD/CAM system under consideration. The rules used in sec-
tion 3.4 to translate between DR1, DR2, and a generic set of predicates are

an example. Additional examples of rules are presented in Chapter 5.
3.5.5 Formatter

Once the knowledge base has been used to obtain the DBIF of the
destination system, the formatter is used- to write the content of the DBIF
in the format that the native CAE/CAD/CAM system requires. This might
be a data base or language. Using the same DBIF encoding of Figure 3.186,
a relational data format can be derived to produce three tables "connects”,

"has”, and "type" which are shown in Figure 3.19.
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CONNECTS:

CompName

C1
A
C1

W >

OO O O

TYPE:

CompName

Figure 3.19. Sample Formatter Results.
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CHAPTER 4
PROTOTYPE SYSTEM

The system architecture for CAE/CAD/CAM data transport,
presented in the previous chapter was implemented using Prolog. Alterna-
tive approaches were considered, but discarded because of the difficulties
that arise in trying to represent a knowledge base. Also, an advantage to
using Prolog is the built-in inference engine which provides for automatic
translation, once the appropriate rules (knowledge base) are defined. Ap-
pendix B describes in detail one alternative implementation considered.
The remainder of this chapter describes Prolog, the elements of the proto-

type implementation, and then a sample operating scenario.
4.1 Introduction to Prolog

This section presents the Prolog language. Readers, familiar with

Prolog, can skip this digression and proceed on to section 4.2.

Prolog is a programming language which dates back to around 1970.
Prolog has gained recent attention as a tool for artificial intelligence, par-
ticularly for Expert and Knowledge-based systems. Prolog programs con-
sist of facts and rules. Facts express information about objects and their
relationship to other objects. Rules contain the intelligence necessary to
derive new facts. One good source for detailed information on Prolog is

Clocksin & Mellish [Cloc81]. A brief description is provided here.
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Syntaz: Prolog programs are built from terms, which are either con-
stants, variables, or structures. Constants are atoms or numbers. Atoms
are any string of characters, enclosed in single quotes, or special Prolog
symbols, or alpha-numeric strings beginning with a lower-case alpha char-
acter. Numbers can either be integers or real numbers. 1) Variables are
alpha-numeric strings beginning with an upper-case alpha character or the

underscore, The underscore can also be inserted in the middle of
atoms or variables to improve readability. Figure 4.1 shows examples of

Prolog terms.

Constants
Variables
Atoms Numbers
mary 123 Gl
‘& [5*abce’ 1.05 Dogs
'Capital’ 3.14¢-5 _X
Figure 4.1. Prolog Terms.

Structures consist of a functor (or predicate) which is an atom, fol-
lowed by one or more terms called arguments. A simple example of a
structure is

owns(mary,Dog).
In this case, the functor is "owns", the first argument can be the constant
atom, "mary”, and the second argument is the variable, "Dog”. Structures
can be nested, since an argument is any term. Thus, an entry in a library

card catalog might be

!“) The Prolog definition presented in ]JClOCgl doesn’t
include real numbers. However, the VAX CProlog does.
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book(author('J. Doe’), _
publisher(name(’McGraw-Hill'),
loc('New York')),

date(1983),

title(’Abstract Data Structures')).
It should be noted that the order of the arguments is important. The
significance of the atoms and structures is strictly the decision of the pro-
grammer. But, consistency in definition is required in order to be able to

obtain the expected results.

One special type of structure is that created by the special functor

dot or . This structures is referred to as a list. "Il‘his is the same as the
list data structure in the programming language LISP. In Prolog, the lists
containing members a, b, and ¢ is represented as .(a,.(b,.(¢,[]})) , where ||
represents the empty list. The same list can also be represented in Prolog

using a special list notation: [a,b,c].

Using these basic elements of Prolog syntax, not only can facts be
asserted, but also rules can be defined. Rules are logic clauses which ex-
press an assumption and the conditions which must be true in order for
the assumption to be true. I'or a more in depth discussion of the relation-
ship of Prolog to predicate calculus and Horn clauses, consult Chapter 10

of Clocksin & Mellish [Cloc81].

To clarify the basic concepts, consider the following logic problem

and the usage of Prolog to solve it.

Three students recently graduated from a college and
want to attend graduate school. Each student will attend a
different university next year, each in a different major field.
The strong point in favor of each student being accepted is
different. Determine the school, major, and strong point of
each student, considering the following clues:
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1. The student who applied to Yale will not be
studying business.

2.  Brown and the student going to Harvard, who is
not Jones, had marginal G.P.A.’s.

3. Jones will not be attending UCLA.

4. The students with good references and high
G.R.E. scores will not be studying History.

5. Smith, who had mediocre G.R.E.’s, doesn't in-
tend to study Computer Science.
The following set of Prolog statements express the same information,

and they can be used to arrive at an answer to the problem.

/* Facts */

name(brown). name(jones). name(smith).
sp(gre). sp(gpa). sp(refs).
sch(ucla). sch{yale). sch(harvard).
mjr(comp _sci). mjr(history). mjr(business).

/* Rules */
strong(B,J,S}):-
sp(B),
==gpa, /* clue 2 */
SP}J), JA\==B,
Regre, /* clue 5%/
\==gre, clue 5
S\==DB, S\==1.
major(B,J,S,5B,SJ,585):-
mjr(S),

===comp _sci, /¥ clue 5 */
clue 4(S,SS),
mjr(J), J\==8S, clue 4(J,SJ),
mjr(B), B\==S§, B\==1,
clue__4(B,SB).

clue 4{history,refs):-! fail.

clue_4(history,gre):-!,fail.
clue _4(_, ).
school(B,J,5,MB,MJ,MS,SB,SJ,SS):-
sch(B),

B\==harvard, /* clue 2 */
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clue 1(B,MB),

sch(J), J\==B,
J\==ucla, /* clue 3 */
J\==harvard, /* clue 2 */
clue 1(J,MJ),
clue™ 2(J,8J),

sch(8), S\==B, S\===1,
clue 1(S,MS),
clue2(5,S8S).

clue 1(yale,business):-! fail.

clue_1{ _, ).
clue _2(harvard,gpa):-1,fail.
clue_2(_, ).

The facts are self-explanatory. The rules can be interpreted as fol-
lows. The definition for "strong” indicates that three variables are to be
instantiated. There is no significance to the letters chosen (B, J, and S) ex-
cept that they are mnemonics chosen to stand for the last names of the

" oo

students. The Prolog atom ":-" can be read "is true if." The definition for
"strong" contains a series of structures on the right-hand side of the ":-"
symbol,. This series represents a conjunction of clauses, each of which
must be true in order for the entire definition to be evaluated as true. The
first clause "sp(B)" will cause "B" to be instantiated to the first constant

found such that "sp( )" is true. In this case, "sp(gre)” is a fact, and "B" is

instantiated to "gre.”

In each succeeding clause of the conjunction, all possible definitions
are tried until one evaluates true. Any variables instantiated in this pro-
cess remain with their set value and processing continues with the next

clause in the series.

In this example, the next clause is "B\==gpa" which reads "B" is

not equal to “gpa.” If this check is true, processing continues. But, once a
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clause cannot be evaluated true, backtracking begins. Working backward
from the point of failure, clauses are re-examined to look for alternative
definitions which evaluate true. In this case, "B\==gpa" is true since "B"
is currently instantiated to “gre.” Note that "/* clue 2 */" is merely a

comment.

The next clause is "sp(J}" which is satisfied by "sp(gre).” The next
clause, "J\==B", now checks to see if "J" (=gre) is not equal to "B"
(=gre). This check evaluates false, and backtracking begins with “sp(J)."
This clause also evaluates true by instantiating "J" with "gpa"” instead of
"gre." Now, "J\==B" is true since "gre" is not equal to "gpa." In this
manner, the remainder of the conjunction series is evaluated. Upon invo-
cation of "strong,” the first successful evaluation returns

"strong(gre,gpa,refs).”

The definition of "major” contains a reference to “clue_4." The
first definition of "clue_ 4" assumes that both arguments have already been
instantiated. In this case, if the two arguments match "history"” and "refs”,
then "clue 4" fails. The "!" also called “the cut” prevents backtracking

|I'"

from proceeding backward over the symbol. In this case, the cut
prevents alternative definitions to "clue 4" from being evaluated. If the
arguments do not match "history” and "refs”, then the next definition is
evaluated. The last definition for "clue 4" contains two instances of the
anonymous variable * _“. This variable is used when no further remember-

ing of the variable is necessary. Each occurrence of " " is a unique vari-
able. The definitions for "clue 4" indicate that it is false if "history"” is

paired with "refs" or "gre"” in the definition of "major." Any other pairing
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is true; i.e., "clue__4(_, )." is a true statement without any condition be-

" on
-

ing imposed by the ":-" symbol.

In order to solve the logic problem, a question needs to be posed
once the facts and rules have been entered. Prolog prompts with "| ?-" and

the question is posed:

| ?- strong(SB,SJ,SS),major(MB,MJMS,SB,SJ,SS),
school(B,J,5,MB,MJ,MS5,SB,SJ,SS).

In this question, the variables SB, SJ, and SS correspond to the strong

points of Brown, Jones, and Smith, respectively; MB, MJ, and MS, their

majors; and B, J, and S their schools. The answer Prolog returns is
CProlog version 1.4d.edai

l ?- ['logprob.pro’].
ogprob.pro consulted 2120 bytes 0.8 sec.

es
r?- strong{SB,5J,S5),

major(MB,MJ,MS,SR,S},SS),
school(B,J,5,MB,MJ,MS,SB,SJ,SS).

S = harvard

J = yale

B = ucla

MS = business

MJ = history

MB = comp sci

SS =refs

SJ = gpa

SB = gre;

no

| ?- halt.

[ Prolog execution halted ]

Prolog contains quite 2 few more built-in predicates and operators.
As necessary to explain the knowledge base and translation process, these
additional Prolog features will be described, This simple example merely il-

lustrates how Prolog works.
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4.2 Prototype Elements

With a proper understanding of Prolog, the knowledge-based ap-

proach to the prototype system and its elements can be described.

As presented in section 3.5, the system architecture for
CAE/CAD/CAM data transport consists of three process modules: com-
piler, translate engine, and formatter. Several data bases feed these
processes: source CAE/CAD/CAM data, generic predicates, source to gen-
eric rules, and generic to target rules. The resulting outputs are target
CAE/CAD/CAM data and kept data in DBIF. Each of these elements will
be described.

4.2.1 Process Modules

Compiler: This module may be implemented a number of ways.
" Conventional compiler techniques are appropriate for language translation
or alternatively Prolog can be used. For a CAE/CAD/CAM data base, a
data base dump routine can be written to produce a DBIF rendition of the

data. For each native data source, a separate compiler is required.

To insure the feasibility of this methodology, two compilers were
produced as part of this research. The first compiler was written to
translate an industry standard, CALMA GDS 1II, data base into its ap-
propriate DBIF. This work was performed by Marilyn Caro as part of a
Master’s Comprehensive Examination at UCLA [Caro83]. The binary input
was read into Ms. Caro’s compiler, written in FORTRAN, and the output
was an early version of the data base intermediate format as described in

section 3.5 and described in further detail in this section. The compiler
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was written in FORTRAN on a VAX 11/780 running VMS. Approximately

600 lines of code were needed to implement the compiler [Caro83].

The input to the compiler was a standard CALMA GDS II Stream
Format tape, which contains binary data. Appendix C shows a hex dump
of a CALMA Stream Format file which was used for this purpose. The
meaning of the Stream Format tape is described in Figur(; 4.2 which shows
a pseudo-BNF description of its syntax. Further desciption of this data is
contained in Chapter 5. The terminals in this description are actually
binary records of variable length. Each binary record starts with 2 bytes
containing a count of the total record length in bytes (8-bits). The third
byte is the record type (e.g., BGNLIB = type 1). The forth byte is the
type of data contained within the record (e.g., 2-byte integer, 4-byte real,
bit array, etc.). Starting with the fifth byte, begins any data associated

with the record type.

Figure 4.3 shows a sample CALMA.Layout, that was used as input to
the compiler. The first step involved taking the CALMA Stream Format
data and reading it from the CALMA system onto a VAX 11/780. Appen-
dix D shows the output of the compiler in the form of a file of assertions or
facts that represent the data in the Stream Format file from the CALMA
system (see Appendix C). A somewhat exhaustive, manual comparison of
the annotated hex dump of the stream format file with the assertions file
shows that there has been no loss of data in the translation. This example
illustrates the feasibility of representing a native CAE/CAD/CAM data
base in terms of DBIF.
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<library >::== HEADER BGNLIB LIBNAME REFLIBS}: FONTS
LATTRTABLE ] | STYPTABLE BC NER}\TIONS ]
NITS { <structure> }* ENDLI

<structure>::= BGNSTR STRNAME [ STRCLASS | | STRTYPE |
{<eclement>}* ENDS

<clement>::= {<boundary> l:<pnth> | <sref> | <aref> | <text> | <node>
| <box>} ELKEY {<link >}+} {<property >}* ENDEL

<boundary >::= BOUNDARY | ELFLAGS | [PLEX | LAYER DATATYPE XY

<path>:= PATH DLFLAGS)JJ PLEX | LAYER DATATYPE | PATHTYPE |
WIDTH

<sref>::= SREF | ELFLAGS ] [PLEX | SNAME [<strans>| XY
<aref>:= AREF | ELFLAGS ] [PLEX | SNAME [<strans>] COLROW XY
<text>:= TEXT [ ELFLAGS | [ PLEX | LAYER <textbody>
<node>::= NODE | ELFLAGS | { PLEX ] LAYER NODETYPE XY
<box>:= BOX | ELFLAGS | [ PLEX | LAYER BOXTYPE XY

<textbody >::= TEXTTYPE | PRESENTATION’{ PATHTYPE |
[ WIDTH | | <strans> | XY STRING

<strans>:= STRANS | MAG | [ ANGLE |

<link > = LINKTYPE LINKKEYS

<property >::= PROPATTR PROPVALUE

NOTE: N dcnotes an entity occurring zero or one time.
"I} denotes pick one of the entities,

denotes entities can occur an arbitrary number of times.
" denotes at least one of the entitics must be present.

1] Luot

"Reprinted with permission by the Calma Company"”

Figure 4.2. Pseudo-BNF description of the CALMA Stream Format.

The second example of using a compiler to produce DBIF, reformats
the TEGAS Design Language (TDL) into DBIF format. TDL is an industry

recognized format for describing interconnections and simulation models
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for performing logic simulation. In this example, a schematic data base
represented in the TDL format is compiled into a set of assertions or facts
that represents the same data content. To perform this, a compiler was
produced using Prolog which contained the necessary syntax and semantic
knowledge in terms of Prolog statements. Approximately 550 lines of Pro-

log code were written to perform the compilation.
The TDL preprocessor language has four major parts:

1. Compiler Instructions

o

File Manager Instructions
3.  Linker Instructions

4. End
The part of interest in this example is the Compiler and its instructions,
which contain a description of the schematic net list along with any models
used. Figure 4.4 shows the structure of the TDL Preprocessor Compiler
commands. The BNF descriptions of these commands are complex. An ex-
cerpt from the August 1983 release of the TDL Preprocessor User & Refer-
ence Manual [TDL83] is provided in Appendix H. This excerpt describes
the syntax of the DEFINE command which is used to specify signals and

the interconnectivity of logic elements.

Figure 4.5 shows a sample TDL input to the compiler. The resulting
DBIF is shown in Appendix E. As in the preceding compilation example
involving CALMA data, this example show the feasibility of compiling a
native CAE/CAD/CAM data format into DBIF. In this case, however,
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LIST OF TDL PREPROCESSOR COMMANDS
COMPILE
start compiler block
DIRECTORY (DIR)
specify default directory for follewing modules
OPTIONS (OPT)
specify compile opticns for following modules

=OOoOrw

MODULE (MOD)
specify name of module
INPUTS (IN)
specify names of module's external input pins
QUTPUTS (OUT)
specify names of module's external output pins
DESCRIPTION (DESC)
up to 1023 characters of description placed
in library with module
LEVEL
declares level name associated with mcdule
on user library
DELAYS (DEL}
specify delays associated with primitive
type name or delay name
USE
references primitives with options and
defined modules (see TDL Simulation Reference
manual).
WIRED
specify options for wired gates
DEFPINE (DEF}
define logic of module in TDL code
END MODULE
end module description

WMEE-HYZON
ZOHBOCH ALK NZH
mbaoox

ZOHBWHDOOMD

END COMPILE
end all module descriptions

"Reprinted with permission by the Calma Company"

Figure 4.4. TDL Preprocessor Compiler Commands.

rather than a binary data base, a man-readable language has been com-

piled into DBIF.

Translate Engine: Once compiled DBIF exists it is input into the
translate engine as shown in Figure 3.15. The basic translate engine con-

sists of the following nine steps:
1.  Initialize

2.  Read in and load source facts and input rules into Prolog da-
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COMPILE;

OPTIONS CATALOG, XREF;

DIRECTORY RPH;

MODULE JKFF/GATE/1/RPH;

INPUTS CLOCK, J, K, PS, PC;

OUTPUTS 0Q, OQB;

DESCRIPTION THE MODULE IS A MASTER/SLAVE JK FLIP-FLOP
WITH PRESET AND PRECLEAR LINES. ;
"(SEE TDL REF. MANUAL P.71)"

DELAYS NANDEL/3,2,4/, NOT/3,2,4/;

"THE FOLLOWING TWO LINES CREATE TWO DIFFERENT TYPES
BASED ON THE PRIMITIVE ELEMENT NAND.

3-NAND IS THE SAME AS NAND.

2-NAND IS DECLARED TO BE A 2 INPUT NAND. "

USE 3-NAND = NAND(3,1) /NANDEL/,
2-NAND = NAND({2,1) /NANDEL/;

DEFINE
DEVI(NAND-A) = 3-NAND(J,QB,CLOCK});
DEV2(NAND-B) = 3-NAND(K,Q,CLOCK);
DEV3(NAND-C) = NAND(PS,NAND-A,NAND-D);
DEV4(NAND-D) = NAND(PC,NAND-B,NAND-C);
DEV5(I) = NOT(CLOCK);
DEVG(NAND-E) = 2-NAND(NAND-C,I);
DEV7{NAND-F) = 2-NAND(NAND-D,]);
G-NAND(Q) = NAND(NAND-E,QB);
H-NAND(QB) = NAND(NAND-F.Q);
DEVS(0Q) = NOT(Q);
DEV9(OQB /1/) = NOT(QB);

END MODULE;

END COMPILE;

Figure 4.5. Sample TDL Input.

tabase.
3. Generate generic facts.
4,  Create kept facts from the input to generic form transiation.

5. Reset fact/rule (Prolog) database.
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6. Read in and load generic facts and output rules into Prolog

database.
7.  Generate target facts.

8.  Add kept facts from the output translation to those created

in step 4.

9.  Clean-up and reset Prolog database.

Figure 4.6 shows this process and the interface with the various data files.

It is important to note that there is no knowledge of any native
CAE/CAD/CAM data format or the generic predicates embedded within
the translate engine. In fact, the same translate engine code (in Prolog)
was used with distinct sets of source/target DBIF's and two different
classes of generic predicates. Chapter 5 describes these test cases and the
results of translation. This translate engine requires approximately 120

lines of Prolog code.

A slightly different sequence ol steps is necessary if a translation is
performed on not only source DBIF, but also uses previously kept facts.
This might be needed if a data base were transported from system A to
system B and then back again. Assuming kept facts were generated in go-
ing from A to B, then in order to reverse the process the same kept facts
would be needed to result in the complete database of system A. In this

case, two additional steps are added to the translate engine:

2A. Read in and load previously kept facts into the Prolog data-

base.
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Figure 4.6. Translate Engine Processing Flaw.
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6A. Read in and load previously kept facts into the Prolog data-

base.
These previously generated kept facts are removed before steps 4 and 8 in
order to avoid having the previously saved data from adding to the newly
created kept facts. Figure 4.7 shows this process flow utilizing previously
kept facts. This modified translate engine consists of approximately 130

lines of Prolog code.

Formatter: Once the translate engine provides target DBIF, for-
matter modules (one for each unique target system type) convert DBIF into
the native CAE/CAD/CAM format. Two formatters were produced in the

course of this study. Again the goal was to show feasibility.

The first formatter converts DBIF into CalTech Intermediate Form
(CIF). CIF is a file format which describes graphic features of VLSI design

layouts [Mead80]. The basic CIF commands are

P - Polygon, defined by its vertices.

B - Box, defined by its length, width, center, and orienta-
tion.

R - Round flash, defined by its diameter and center.

Wire - Wire, defined by its vertices and width.
L - Layer specification.

DS - Define symbol.

DF - Finish symbol definition.

DD - Delete symbol definition.

Mead and Conway, INTRODUCTION TO VLSI SYSTEMS,
© 1980, Addison-Wesley, Reading, Massachusetts. Pgs. 115
through 126. Reprinted with permission.
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C - Call symbol and provide transformation.
In addition to these basic commands are facilities for commenting the file
and extending the command repertoire with user extensions. A complete

syntax definition is provided in Figure 4.8 as published in [Mead20).

cifFile = blunk «. command i semi endCommand blank .
commund = primCommand | defDeleteCommand

defStart Command semi blank , pnmCommand semu defFinishCommand.
prrmCommand = pulygonCommand | boxCommand * roundFlashCommand ; wireCommand’

layerCommand : callCommund ' userExtensisnCommand ¢ commentCommand.

polygoavmmiund = P path.

hovCommund = "B’ integer sepinteger sep pant sep point
round FlashCommang = "R integer sep puint.

wireCumming = W' integer sep path.

faverCommind = ‘L' bhlank shortname.
defStarnCommand a D7 blank S Tinteper sepinieser seponteger |
delFimsht ommand = ‘D" blank CF

delDeteteCommind 2 D blunkh D inteer.

callCommang = Cinteger transiormation,
userExtenvuunCvmmind = diit user Text,

commentCommand = fvomment Tent'y”

endCemmand = “E”

blank . T point’ "M™ blank “X""'"*M"" biank ¥’ "R point .

transtormatian

path = pmint sep point .,

point 2 «nteger sep sinteger.

sinteger = sep =" integerD.

inleger = sep ntegerD,

miegerD = digit. digit ..

shariname =¢cllic-ic.,

< = digit; upperChar,

userText = userChar:.

commentText = commeniChar .commentText " "commeniText™ 1" commeni Text.
sem = biank " blank .

sep = upperChar blank.

digt w g [T p g gt g 3 g ey

upperChar @ AT BT QT2

blank = any ASCII character except digit. upperChar. ~ =", "t vV", or =%
userChar = any ASCI! charucter except ="',

commentChar = any ASCII charucter excepr "("7or 1",

Figure 4.8. CIF Syntax Description.

The CIF formatter based upon this syntax, developed by M. Caro [Caro83],
consists of approximately 350 lines for FORTRAN code. The sample CIF
DBIF used to demonstrate the formatter is included in Appendix F. This
is an early version of the DBIF and is slightly different than the DBIF that
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was used in experiments with the translate engine. The native CIF output

by the formatter is shown in Appendix G.

A second formatter was written for the hypothetical relational data-
base native format, DR1, described in Chapter 3. The sample DBIF for
DR1 is shown in Figure 4.9. The formatter is quite trivial due to the power
of Prolog and the simplicity of the DR1 tabular form. The Prolog code,
shown in Figure 4.10, consists of approximately 20 lines of code. The
resulting tabular form for DR1 is suitable for loading into a relational
DBMS (see Figure 4.11). Note that the order of the facts in Figure 4.9 is
immaterial. All of the facts are stored in the Prolog database and can be

accessed by the code of Figure 4.10.

A walk through the Prolog code for "drlwrt” in Figure 4.10 illus-
trates the formatter process and also how Prolog operates in general. The
execution of the formatter begins in line 1 with the "['drl.dat’]" clause
which consults the file "drl.dat”. This means that Prolog facts and rules
contained in this file will be added to the Prolog database. Continuing
with line 1, the "tell" clause directs any further outpui to the file
"drlout.dat”. The next clause, "[ail", causes Prolog to backtrack over pre-
viously encountered clauses, looking for instantiated variables which could
be associated with a new value. In this case, there were no instantiated
variables in this line, so backtracking regresses back to the head of line 1,
"driwrt”. Since this entire rule evaluates to false (due to the “fail” clause),

Prolog looks for another rule for “drlwrt" which might evaluate to truc.
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dbid(schemex1,dr1,’1.0','1/11/84:17:06"}.

content([signal(s7),comp _ name(c1),pin(02),comp__ type(conn),
connect(s7,c1,02),has{cl,conn),

signal(s7),comp _name(b),pin(y },comp _ type(t2),
connect(s7,b,y),has(b,t2),

signal(s6),comp__name(cl),pin(ol),comp __type(conn),
connect(s6,c1,01),has(cl,conn),

signal(s6),comp _name(c),pin(y),comp __type{t2),
connect(s6,c,y),has(c,t2),

signal(s5},comp _name(b),pin(i1),comp _ type(t2),
connect(s5,b,i1),has(b,t2),

signal(s5),comp _name(c),pin(i2),comp _ type(t2),
connect(s5,¢,i2},has(e,t2),

signal(s5),comp _name(a),pin(qn),comp _ type(tl),
connect(s5,a,qn),has(a,t1),

signal(s4),comp _name{c),pin(il},comp _type(t2},
connect(sd,c,il),has(c,t2),

signal(s4),comp _name(a),pin(q),comp _type(tl),
connect(s4,a,q).has(a,t1),

signal(s3),comp __name(b),pin(i2),comp _ type(t2),
connect(s3,b,i2),has(b,t2),

signal(s3),comp _name(c1),pin(i3),comp _type(conn),
connect(s3,c1,i3),has{c1,conn),

signal(s2),comp _name(a),pin(s),comp _type(tl),
connect(s2,a,s),has(a.tl),

signal(s2),comp_name(c1),pin(i2),comp __type(conn),
connect(s2,c1,i2),has(cl,conn),

signal{s1),comp __name(a),pin(r),comp _type(tl),
connect{sl,a,r)has(a,tl),

signal{s1),comp _name(cl),pin(il),comp _ type(conn),
conneet(sl,cl,il),has{cl,conn),

dummy]).

Figure 4.9. Sample DBIF for DR1.

In a like manner, line 2 begins by trying to instantiate the variable
F with something such that "content(F)" is a fact. Since the data from
"drl.dat” contains a clause "content([...])", F is associated with the list of
terms contained between the parentheses of the "content” term (see Figure
4.9). Continuing with line 2 of the Prolog code (Figure 4.10), the "loadfact"

term is evaluated with the current value for F, assigned in the "content"”
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/* 1 */ drlwrt:-['drl.dat’],tell('drlout.dat’) fail.
/* 2 */ drlwrt:-content(F),loadfact(F),fail.
/* 3 */ drlwrt:-connect(S,C,P),signal(S),

TA B comp __name(C),pin{P),has(C,T),
[*5 %/ comp __type(T),putlft(S,0,12,P1),
[*6*/ putlft(C,P1,12,P2),

[* 7% putlft(P,P2,12,P3),

[*8% putift(T,P3,12,P4),

/*o*/ putstring("."),nl,fail.

[*10%f driwrt:-told.

loadfact([)).
loadfact([H]T}):--retr(H),assertz(H),load fact(T).

retr(R):-retract(R),fail.
retr(R).

putift(Dat,Cur,Leng,New):-name(Dat,D}.length(D,L),putlit2(D,Cur.Leng L},
New is Cur+Leng.

putlft2(D,C L L2)--L=L2,putstring(D).

putlft2(D,C,L L2):-L < L2 firstN(D,L,D2),putstring(D2).

putlft2(D,C,L,L2):-L>L2M is L-L2,putstring(D),tab(M).

putstring([]).
putstring([H|T]):-put(H}.putstring(T).

Figure 4.10. Prolog Code for the DR1 Formatter.

s7 cl 02 conn

s7 b y t2

sb cl ol conn
s6 c y t2

s5 b il 2

s5 c i2 t2

sb a qn tL

s4 c il t2

s4 a q ti

s3 b i2 t2

s3 cl i3 conn

s2 a S t1

s2 cl i2 conn

sl a r t1 .
sl cl i1 conn .}

Figure 4.11. Tabular Form of DR1 Data.
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clause. "Loadfact" merely picks each term in the list and appends it to the
Prolog database. The "fail" term at the end of line 2 causes this line to
evaluate false, and Prolog backtracks, looking for another "drlwrt" rule

which will evaluate to true.

Line 3 begins with the term "connect(S,C,P)", and the Prolog data-
base is searched looking for a "connect” term. The first such term is
“connect(s7,c1,02)", and the variables "S", "C", and "P" are instantiated
with the constants "s7", "c1”, and "02", respectively. Having satisfied the
“connect” term, Prolog continues on to the "signal(S)" term. At this point,
"S" has been instantiated with "s7", so Prolog looks into the database to
see if "signal(s7)" is true. Since this is so, Prolog continues with the next

term in the secries beginning with line 3 {driwrt).

Terms continue to be satisfied in this instance through the term "nl"
(new line). At this point, the first line of "drlout.dat” has been output (see
Figure 4.11). Upon encountering the next term, "fail” (line 9), backtrack-
ing resumes. Each term in this rule (lines 3-9) is re-examined in reverse
order to determine if an alternative value can be used to re-instantiate a
variable such that the term containing the variable is still true. The terms
"putstring”, "putlft”, "comp _type", "has”, "pin", "comp _name", and "sig-
nal” do not instantiate any variables which can be re-assigned new values.

The backtracking process finally arrives at "connect(S,C,P)" where the

variables "S", "C", and "P" were instantiated.

Searching through the Prolog database from where we left off, Pro-
log encounters an alternate definition for "connect”. "Connect(s7,b,y)" in-

stantiates these values to the variables "S", "C", and "P", backtracking
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stops, and processing proceeds forward again with the new values a
ssigned. The forward process continues until "fail" is reached. THis time
the second line of "drlout.dat" is output (see Figure 4.11). The flow alter-
nates backward and forward, each time using a different instance of “con-
nect” in the Prolog database {see Figure 4.9). For each instance of "con-

nect”, a new line of "drlout.dat” (Figure 4.11) is produced.

Oﬁce the last instance of "connect" has been used in this process,
backtracking back to the "connect” term in line 3 will fail, and the entire
"driwrt” rule will finally be evaluated false. Backtracking will continue to
lead to the definition for "drlwrt” in line 10. Here, the term "told” means
to stop “telling”, i.e., the file "drlout.dat” is closed since this is the file
opened with the last previously executed "tell” term in line 1. "Told"
evaluates true, and so does "drlwrt". The evaluation of "drlwrt” stops

and the processing is over.
4.2.2 Data Elements

DBIF: Thus far, the processes of the prototype have heen described
and examples presented. Complementing the processes are the data bases
which provide the information to be transported and the rules to be used

to accomplish this.

The DBIF, as described earlier, provides a standard format for pro-
cessing. The syntax of DBIF in the prototype implementation is just the
syntax of Prolog terms. Any fact expressible in Prolog can be used as part

of a DBIF for a native CAE/CAD/CAM form.
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In practice, each native format contains a number of basic data ele-
ments which are combined to form a complete native database or language
segment. For example, the fields in a relational database are candidates for
terms in Prolog. Several examples have been presented and more substan-

tial test cases will be presented in Chapter 5.

Generic Predicates: As discussed in section 3.5.2 and in 4.2.1,
describing the translate engine, generic predicates are used to assist in a
general n-way translation scheme (refer to Figure 3.11). For each class of
CAE/CAD/CAM data, a set of generic predicates is provided. Figures 3.17
and 3.18 show generic predicates for the "logical” and "physical” classes of
data. The encoding of these generic predicates into Prolog is shown in IMig-
ures 4.12 and 4.13. These predicates provide a set of reference terms in

which translate rules are expressed.

node{X).

net(X).

box(X).

box _type(X).
net _type{X}.
node _type(X).
node __dir(X).
connected (X,Y,Z).
has__(X,Y).

Figure 4.12. Prolog Encoding of Generic
Predicates for Logical Data.
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polygon __(P).
wire__(W).
macro__def(S).
macro__call(S,N).
scale_ (S).

layer _(X,L).
vertex _ (5,X,Y,I).
width _(X,W).
orient _ (X,AX,AY,AZ).
has_(X,Y).

magnifl _(S,M).
relative _orient(S).
relative __magnif(S).
text _(T).

textval _(T,Str).
h__just(T,N).
v__just(T,N).

tfont _(T.F).

Figure 4.13. Prolog Encoding of Generic
Predicates for Physical Data.

Rules: Using the generic predicates, rules are written to show how
each DBIF is re-written into generic predicates. Likewise, rules are also
prescribed for expressing each generic predicate in terms of DBIF predi-
cates. Consider an example of the use of rules and generic predicates using
the hypothetical DR2 database shown in Figure 4.114 in DBIF form. (The

corresponding schematic diagram was shown in Figure 3.8).

In order to translate this DBIF into generic predicates, rules must be
provided to indicate how the translation is performed. The set of gencric
predicates used for logical data (Figure 4.12) was actually used in experi-
ments with the prototype implementation. Contrasting these predicates

with the terms used in the DR2 DBIF, Figure 4.15 shows the mapping from
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dbid(exsch1,dr2,'3.0’,'1/4/84:16:01").
content([body(a),body(b),body(c),body(c1),
bt{t1),bt(t2),bt(conn),
ndt(i1),ndt(i2),ndt(i3),ndt(y),
ndt(o1),ndt(02),ndt(r),ndt(s),
ndt(q),ndt(qn),
has(t1, qn),has(t1, q),has(t1, s),has(tl, r),
has(t2, il),has(t2, i2),has(t2, y),
has(conn,il),has(conn,i2),has(conn,i3),
has(conn,ol),has(conn,02),
has(a, t1), has{b, t2}, has(c, t2), has(c1, conn),
signal(s1),signal(s2),signal(s3),signal(s4),signal(s5),
signal(s6),signal(s7),
vertex(a, r, [10,90], 1),vertex(a, s, [10,80], 1),
vertex(a, q, [20,00], 1),vertex(a, qn, {20,80], 1),
vertex(b, il, [30,40], 1),vertex(b, i2, [30,20], 1),
vertex{b, y, [40,30], 1},
vertex(c, i1, [50,80], 1),vertex(c, i2, [50,60], 1),
vertex{c, y, [60,70], 1),
vertex(cl, il, [0,90], 1),vertex(cl, i2, [0,80], 1),
vertex(cl, i3, [10,20], 1),vertex(cl, ol, [70,70]. 1),
vertex(cl, 02, [60,30], 1),
vertex(sl, [0,90], 1),vertex(sl, [10,90], 2),
vertex(s2, [0,80], 1),vertex(s2, [10,80], 2),
vertex(s3, 10,20}, 1),vertex(s3, [30,20|, 2),
vertex(s4, |20,90], 1),vertex(s4, [50,80], 2},
vertex(s5, [20,80], 1),vertex(s5, [25,60], 2),
vertex(s5, [50,60|. 3),vertex{s5, [30,10], 4),
vertex(s6, [60,70], 1),vertex{s6, [70,70], 2),
vertex(s7, [10,30], 1),vertex{s7, [60,30|, 2)]).

Figure 4.14. DBIF for Sample DR2 Data Base.

DR2 terms to generic predicates. Note that the term "vertex” does not
have an exact generic counterpart. Similarly, generic predicates, "node",
"net _type", "node type", and "node dir" do not have equivalents in
DR2. While the concept of a "node direction” (node__dir) may not be

necessary to describe a logic network, certainly, the "node" concept is.
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Indeed, there are implicit nodes in DR2; however, node types are used in

DR2 to refer to the nodes.

DR2 GENERIC
signal(X) - net(X)
bt(X) — net{X)
ndi(X) — net(X)
body(X) — net(X)
vertex{W,X,Y,Z) — ?
vertex(X,Y,Z}) — ?
has(X,Y) - has__(X)
? - node(X)
? — node(X)
? -+ node(X)
vertex(?) - connected(X,Y,Z)

Figure 4.15. Mapping of DR2 Terms
onto Generic Predicates.

These mismatches between DR2 and a generic definition of "logical
class data are an example of the delta preblem described in previous
chapters. It is necessary that rules be written to deal with these
mismatches. Figure 4.16 shows a set of rules which not only perform the
tansformation form DR2 DBITF into a generic form, but also generates gen-
eric data without DR2 equivalent. Also, a provision is made to keep DR2

data which cannot be represented in terms of generic predicates.

The rules which translate the DR2 terms, "signal”, "bt", "ndt", and
"body" are straight-forward, and merely reflect a one-to-one mapping. The
rule for creating generic "nodes” is more complex. It relies upon DR2 terms

and creates the missing generic relationships. the first "node(X)" rule says



net(X):-signal(X).
hox(X)-body(X).
box _type(X):-bt{X).

connected(Box,Signal,Node):-vertex(Signal,V,I},vertex(Box,Ntype,V,1),
has__ (Node,Ntype),node(Node),has__(Box,Bt),has__(Bt,Node).

keep(vertex(X,Y,V,1}):-vertex(X,Y,V,1).

node(X):-keep(node(X)).

node(X):-!,ndt(Y),bt(Z),has(Z,Y),gensym(node _,X),asserta{node(X)),
asserta(has_ (X,Y)),asserta(has__ (Z,X)),retract{has(Z,Y)).

node_type(X)-keep(node _type(X)).
node _type(Y):-!,ndt(Y).

net _type(X):-keep(net _type(X)).
net__type(X):-! signal(Y),gensym(nt__ X),assert(has_ (Y ,X)).

node _dir(X):-keep(node _dir{X)).
node _dir(X):-!,ndt(Y),has__(Z,Y),node(Z),gensym(ndr _ X),assert(has__(Z,X)).

has_ {X,Y):-body(X),has(X,Y),bt(Y).

Figure 4.16. Rules for Transforming DR2 into a Generic Form.

that X 1s a node if there is a kept fact thal X is a node. This is for the case
that not only a DR2 data base is being input but also a data base of previ-
ously kept data. This scenario corresponds to the process flow shown in
Figure 4.7 as opposed to Figure 4.6 where previously kept facts don’t exist.
The second "node(X)" rule first looks for a node type Y (ndt(Y)) and a
body type Z (bt(Z)) such that Z has Y. For each Y and Z meet this condi-
tion, the function "gensym" will generate a unique constant of the form
“node_ x" where x is 1,2,3,... . The constant will then be considered a node

name and that fact inserted into the Prolog database ("asserta(node(X))").
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Appropriate relationships between this new node, its node type, and the
containing body type will then be asserted ("asserta(has (X,Y))" and
"asserta(has_ (Z,X})").

This transformation from DR2 to generic form illustrates the
different philosophy between the two systems. In DR2, each body type
(bt) has a set of node types (ndt). A body has a body type (bt). Vertices
connect signals to the node types of a particular body (which is an in-
stance of a body type). From the generic point of view, a box (= DR2
body) has a box type, a box type has a node, and a node has a node type.

The different representations are illustrated in Figure 4.17.

One additional rule of interest is the one for the generic predicate,
"connected”. Since the generic predicates are evaluated in sequence (as
shown in Figure 4.12), it is possible for one predicate's rule to rely upon
the Prolog database facts generated by the rules for predicates processed
earlier in the sequence. Such is the case for the "connected” rule. In this
rule, the Prolog database is searched for a vertex held in common between
a signal and a node type. Then the node type is mapped to a node gen-
erated ecarlier by the node rule. The previously asserted "has " facts are

used in the mapping.

In a like manner, each rule is processed and the data transformed

from the source DBIF to the target DBIF. A complete scenario follows.
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4.3 Operational Scenario

To illustrate how the various prototype processing elements func-
tion, consider the two native data formats DR2 and DR1. The native form
for the DR2 data was shown in Figure 3.2 and for DR1 in Figure 3.7. By
following the flow diagram in Figure 4.6, the DR2 DBIF can be transformed
into DR1 DBIF. Executing the Prolog code which implements this flow di-

agram results in the‘system log shown in Figure 4.18.

The Prolog term "translate(...)"” in this figure begins the execution.
The arguments to "translate” indicate that the source DBIF is the file,
"dr2.dat”, and that the target DBIF will be written into file ,"drl.dat", the
new data base identifier (dbid) in this file will be "exschT", version "10.0"
written on 1/10/84 at 2:53pm. The target system is "DR1" (argument 5).
The file "dr1K.dat”: (arg. 3) will be used to store any kept facts generated

in the process. The output lines in the system log which follow the

“translate” term indicate the steps in the process.

As shown in Figure 4.6, step 1 involves initialization. Step 2 reads
in the source DBIF and the source input rules. The system log (Figure

4.18) shows this action. The line "dr2.dat consulted ..." indicates that the
source DBIF (Figure 4.14) was read in. The next line after the "Trans |
a t e" banner in the system log echoes the "dbid" from "dr2.dat". The
second argument of this "dbid"” term indicates the source system "dr2".
Based on this argument, the file (dr2)in.rul (Figure 4.16) is assumed to con-

tain the source input rules. These are read in next. This initial start up

segment encompassing steps 1 and 2 is not complete.
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CProlog version 1.4d.edai
| Restoring file /u/ua/hooper/tran10.env |

e3
]Y?- ['/u/uafbooper/pro/gensym.pro’].
/u/ua/hooper/pro/gensym pro consulted 812 bytes 0.3 sec.

e3
?- translate('dr2.dat’,'drl.dat’,"dr1K. dat’,exschT,drt,’10.0","1/10/84:14:53").
dr2.dat consulted 2832 bytes 0.65 sec.

>>Translate: VIO <<

dbid(exsch1,dr2,3.0,1 /4/84:16.01)
dr2in.rul consulted 1472 bytes 0 46667 sec.
Start Up  2.42 sec.
T=node( _ 993} 12 facts.
T=net( _993) 7 [acts.
T=box(_993) 4 facts.
T=box _type(_093) 3 facts.
=net _type(_003) 7 facts.
T=node _type(_903) 10 facts.
T=node __dir(_993) 12 facls.
T==macro_call{ _993) 0 facts.
T=macro _def(_003) 0 lacts.
T=connected( 993, 094, _995) 15 facts.
T=has_{_ 903, _904) 47 facts
=end_of _file” 0 lacts.
117 facts total
Generic  8.35 sec.
Keep 0.62 sec.
Unload 145 sec.
driout.rul consulted 948 bytes 0.31667 sec.
=sigoal{_3071) 7 facts.
T=pin{_3071) 10 facts.
T=comp_name(__3071) 4 facts.
=comp _type{__3071) 3 facts.
=connect{ 3071, _3072, 3073} 15 facts.
T=has( _3071,_3072) 4 facts.
=end _of _ file 0 facts.
43 facts total.
Phase 2 5.33 sec,
Output Keep 3.88 sec.

Total time is 23.13 sec.

es
?- halt.

[ Prolog execution halted |

Figure 4.18. System Log of the Prototype Execution.

Step 3 involves the generation of generic data. The generic predi-
cates (I'igure 4.12) are read in one at a time (from "gencon.rui"), and all
possible values for any variables contained in the generic predicate are gen-

erated. As each generic predicate is read in, it is echoed out into the sys-

117



tem log, and the number of facts generated for that predicate is printed
also (e.g., "T=node(__993) 12 facts." (42) ). At the end of step 3, all gener-
ic data has been generated (see Figure 4.19). The system log shown that
117 generic facts were generated in total. The log also indicates that 8.35

seconds of CPU %) time were expended in producing the generic data.

Step 4 involves creating kept facts which would be lost in transla-
tion between DR2 and the generic form. These are written into
“dr1K.dat". Additional kept facts are added in step 8. This step marked

"Keep" took 0.62 CPU seconds.

Step 5 resets the Prolog database by removing any DR2 data and
kept facts. The system log identifies this step as "Unload” and reports

that it took 1.45 sceonds.

Step 6 reads in the generic data created in step 3 and also the target
output translation rules (see Figure 4.20), "drlout.rul”. This event is re-

ported in the system log, "drlout.rul.consulted ...".

Step 7 generates the target DBIF. As each DR1 predicate is read, it
1s echoed out and the number of facts generated is reported. The target
output rules read in from step 6 are used to map from the generic data

(Figure 4.19) into DR1 predicates. As the system log shows, 7 signals were

(42) The numbered Prolog variables (e.g., __993) beginning

with an underscore are the internal Prolog names for
variables.

(#3) The CPU is a VAX 11/750 running LCC LOCUS, a
distributed UNIX operating system.
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node(node _1). node node_2 . node(pode_ 3}.
node(node _4). node(node _ node{node _ 6
node(node 7).  node(node 8 node(node
node({nade _ 10) node{node ll) node(node )
net 31; net s2g net(s3).  mnet(s4).
net(sd net{sb net(s7).
box(a). box(b). box(c). box(ci).
box _type(t1). box_type(t2). box_ type(conn).
net type ot_1). net _type{nt _2).
net _type(ot__3). met_type nt__‘l X
net __type{nt _ 5 . pneb__type(nt _6).
net ~_type(nt 7).
node _type |l_) node_type(i2). node_ type(i3d).
node_type(y). node_type[ol). node_ type(o2).
node _type(r). node _type(s).” node type(q)
node __type(qn).
node _ dir(ndr l . node _dir{ndr 2 .
node _dir(ndr _ node _dir(ndr_
node _dir ndr_5 node __dir{ndr_
node __dir{ndr_7). node _dir{ndr_ 8
node _dir(ndr_9}). node _dir{ndr_ IO)
pode _dir{ndr_11). pode_dir{ndr_12).
connected(cl,sl,node_2). “connected(a,at,node_9),
connected{cl,s2,node_4). connected(a s.,node 10).
connected(c1,s3, nodc 5 connected b.sa,node_fl
connected(a, 34 nodc conpected{c,s4,n0de _ 1)
connected(a,s5,node 1" connected(c,s5,node _ 3
connected b 35 node _t). connectedic 36 node "s).
connected cl 36 nodé” 7). connected{b,s7 ,node_6).
connected{cl,s7,node_8).
has _{t1, node 12) has node _12,qn).
has (L1, ‘mode "11). has pode _11,q).
has_(tl,node”_10). has_(node_ 10 s)
has _(tl,node_9). has _(pode _9,r}.
bas _(conn,node__ 8 has_(node_ 8,02
has_(conn,node ha.s node 7.01).
has (L2, node BT bhas _{node _ ,y)
has " (conn,node 5) has_(node_5,13).
has _{conn,node bas” (node _4,i2
has LQ,uode 3-)'. has_Tnode 3 t")
has_(conn,node 2} has’ (node ..,ll)
has_ (t2,node 1}  has_T{noede_1,il).
bas_(a,t1). “has _(bt2): haa (c,t'.?)_
has _(cl,conn} Bas_(sl,nt has (s..nt 2).
bas (33,0t _3). bas_ 34, nt__ 4 has__(s5,nt__5).
has” (s6,nt_6). has_(s7,nt has _ node “2,ndr_1).
has _(node _1,ndr_2)" has nodc _4,ndr_3).
has_ (nede_ 3, ndr 4}, has” (node5,ndr_5).
has_(node__6,0dr_6) has_(node_ 7,ndr__ 7
has _(node”_B,ndr_8). has” (node 9, ,ndr 9).
has_(node 10,ndr_!0 . has__(node_ 11, nd? 1)
bas_(node_12,ndr_12).

Figure 4.19. Generic Data Generated by the Prototype

Translate Engine.

generated. After all target facts have been generated, their number is re-

ported (43 in this case) and the end of step 7 is reported Phase

sec.". The 43 target DBIF facts are shown in Figure 4.21
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signal(X):-net(X).

pin(X):--node __type(X).

comp _name(X):-box(X).

comp _type{X):-box _type(X).

connect(S,C,P):-connected(C,S,N),has__(C,CT),has_ (CT,N),has__(N,P),
node__type(P).

has(X,Y):-box(X),has __(X,Y),box_ type(Y).

keep(node __dir(X)):-node __dir{X).

keep(has__(X,Y)):-node(X),bas_(X,Y),node__type(Y).

keep(has _ (X,Y)):-node(X),has _(X,Y),node__dir(Y).

keep(has__(X,Y)):-net(X),has__(X,Y),net _type(Y).

keep(has__(X,Y)):-box _type(X),has__(X,Y),node(Y).

Figure 4.20. DRI Target Output Rules.

dbid{exschT,dr1,'10.0','1/10/84:14:53').

content(| signal{s7)signal{s6),signal(s5),
signal(s4),signal{s3),signal(s2),signal{s1},
pin{qn).pin(a), pin(s), pin(r), pin(02),pin(o1),
pin(y),pin(i3),pin(i2),pin(il),

comp _name(cl),comp _name(c),comp__name(b),
comp _name(a),

comp __type(conn)comp _ type(t2),comp _type(tl),
connect(s7,¢1,02),connect{s7,b,y), connect{sf,cl,0l)},
connect(s6,c,y), connect(s5,b,il), connect(s5,¢,i2),
connect(s5,3,qn), connect(sd,c,il), connect{s4,a,q),
connect(s3,b,i2), connect(s3,c1,i3),connect(s2,a,s),
connect{s2,cl,i2),connect(sl,a,r), connect{sl,cl,il),
has{cl,conn),has(c,t2),has(b,t2),has(a,t1),dummy]).

Figure 4.21. Target DR1 DBIF.

Step 8 adds kept facts to "drlK.dat". These new kept facts are the

result of translating generic predicates into target predicates. Figure 4.22

shows the set of kept facts. Here, it is shown that the "vertex" predicates

were lost in transporting DR2 into the generic format and "“node",

"

net _type", "node_type", "node_dir", and their corresponding "has __
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predicates were lost in transporting from generic into the DR1 format.

The system log indicates that step 8 ("Output Keep") took 3.88 seconds.

fromdb{exschi, dr2 '3 0 ).
todb({schemex, drl
contcnt([kecp(vencw(a I,

10,90},1
)[) L)),

keep{vertex(a,s,[10,80], keep(vertex(a,q,{20,90] 1)),

keep{vertex(a 9z, IQO 80 l)) keep{vertex(b, |1 [30,40,1 )
keep(vertex(b,i2,130,20 l ; keep{vertex b,y. 40 30] l)

keep(vertex(e,il [50, '80],1 keep(vertex(c :.,[50 60

keep(vertex(c,y, IGO 70| l) keep(node node l"’ eep uode node _11)),
keep(vertex(cl,:1,{0,80{,1 ; keep(node(node” cep node node 9)),
keep(vertexicl 1‘2, 0,80{, keep(node(node 8 keep node(oode __7}),
keep(vertex cl,i3, EO,L’OI 1)), keep(node(node 6)), keep(node(nede 5 ,
keep(vertex(cl,o1,[70,70|,1 g, keep(node(node _4)), keep(node(node 3 ,
keep(vertex{cl,02, 60 30],1 keep{node(node _2}), keep(node(nade 1)),
keep(net t.ypc nt keep net _type(nt 6 ,

keep(net _type(nt _5)),keep(net _Lype(nt _4)),

keep(net _type{nt 3 ,keep(net _type(nt_ 2})) keep(net _type(at 1)},

keep{node _type qa)). keep node _type(q)).k cep(node type(s)),keep(node__type(r)),
keep(node _type(o2 kccp nede _type(ol)) keep(node _type(v)),

keep(node _ type(i3}), kee &nodc “type(12)),keep(node _“type(il)),

keep(node _ dir(ndr _ l"‘ cep(node dlr{ndr 11},

keep(node ~ dir{ndr_ Jkeep(node _dir{ndr 9))

keep(node _ dir(ndr_ keep node _ “dir{ndr N

keep(node _dir(ndr _6)}. keep(node _dir(ndr _

keep{node _dir(ndr_

n

keep{node _dir(ndr_

M

, keep(node _dir(ndr_ :
, keep(node _dir(ndr _1)),
il q

keep(has__{node l.!.qn){ keep(has_{node _

keep(has " (node ~10,5)),keep(has_{node ,r)),
keep{has _(node 8 02)) keep(has_ (vode”_7,01}),
keep(has _(node ” Gy) keep(bas _(node 5,i3 X
keep(bas (node 4,i2)),keep(has _(node 3,i2 R
keep(has _(node _ ‘2 1l keep(has__(node” 1,i1

keep(has ~(node’ ndr l“ Jkeep(has _ nodc 1,ndr_11)),
keep(has _(node _ 10 ndr ,keep(has node 9, ndr 9)),
keep(has _(node 8, ndr 8 eep has _(node_ 7 ndr_7 ,
keep{has _{node _6,ndr _ G Iucp has_(node” S.ndr_5
keep(has _({node _4,ndr_3)},keep(has _(node indr_ ,
keep(has _(node ...ndr Jkeep(has_(node”_1,ndr_2)},
keep(has _(s7,nt__7 keep(has 36 nt_ﬁ

keep(bas” (35,0t " 5)},keep(has_ (34,0t _4)),

keep(has _(s3,ut_ 'l Jkeep(bas_ (s2,nt 2

keep(has _{s1,nt _ keep(has conn,node’ J)
keep(has _(conn, node H ,keep(bay gconn no 5”
keep(has _(conn, ‘node 77 keeplbas _(conn,node_ 8
keep(has _(t2,node 1)), keep(has _Er.‘.!,node_.'!}',
keep(has _{t2,node _6)}, keeplhas _(t1,node _9)),
keep(has _(t1,node _10}), keep(has _ (t1,n0de _11}),
keep(has _ (t1 node _12)),dummy]|).

Figure 4.22. Kept Facts Generated in
Transporting Data from DR2 to DR1.

Step 9 is the final clean-up, the Prolog database is reset to elim-
inate any facts from the last translation. The total time for the translation

from DR2 to DR1 was 23.13 seconds.
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This simple example illustrates several things which are common in
transporting data between any two systems. First, the number of facts in
each system is likely to be different. Second, the data model each system
uses is likely to be different. This will necessitate that some facts be gen-
erated and others be stored as kept facts. Finally, the kept data needs to
contain enough information to allow the original data format to be recon-
structed. In the next chapter, the reverse translation from DR1 back to
DR2 using the kept facts is presented. Then, the DR1-DR2 example com-

plete, two additional test cases are analyzed.



CHAPTER 5
TEST CASES

In the preceeding chapter, a knowledge-based prototype was
described for transporting data between CAE/CAD/CAM systems. A sim-
ple example using hypothetical data base formats, DR1 and DR2, illustrat-
ed how the prototype operates. In this chapter, the DR1-DR2 example is
completed by demonstrating the transport of the data back from DRI into
DR2, utilizing kept data to reconstruct the original DR2 data base exactly
as it was to start. This example shows how the prototype addresses the

delta problem described in Chapter 3.

To avoid over-generalizing the significance of the DR1-DR2 example,
two additional test cases are analyzed. The first is another exan'lple of
data belonging to the logical class of data described in Chapter 2. The TE-
GAS Design Language (TDL), a widely recognized schematic network
description language, is translated into a Hughes PCB CAD schematic
data base and then back again. The second test case transports "physical
class” data (i.e., representing an IC layout) between the CALMA GDS I
Stream Format and the Cal Tech Intermediate Form (CIF). As in the pre-
vious example, the data models between the two systems are not one-to-
one. The methodology of using kept data is utilized to make the bi-

directional transport possible.
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5.1 Hypothetical Cases: DR1 and DR2

In the previous chapter, DR2 data was translated into DR1 format
using a prototype transport system. In the process of creating the DRI
format, kept data (Figure 4.22) was created. Since DR1 does not contain all
of the data entities that are a part of DR2 (e.g., vertex), it would be impos-
sible to provide these entities without the kept data. In Chapter 4, a
translate engine process flow was presented which used the kept data (see
Figure 4.7). Using the steps in this flow diagram, the DR] data can be
translated back into DR2 format. Both the forward and reverse data tran-

sport are shown in Figure 5.1.

The Prolog system log for the processing steps of Figure 4.7, is
shown in Figure 5.2. As Figure 5.1 indicates, several input files are re-
quired. First, the source DBIF and source input rules are read-in in Step 2
(Figure 4.7). ("drl.dat consulted ..." and “"drlin.rul consulted ..." as noted
in Figure 5.2) Figure 5.3 shows the output DR1 DBIF which was produced
in Chapter 4. This file ("dr1.dat") will now serve as the input or source for
the reverse translation (see Figure 5.1). Figure 5.4 lists the source input

rules (drlin.rul).

Next, Step 2A (Figure 4.7) reads-in the previously kept facts (noted
as "drlK.dat consulted ..." in (Figure 5.2). As shown in Figure 5.1, the kept
data for this reverse transport example is the same kept data created in

Chapter 4. (see Figure 4.22)

Step 3 (I'igure 4.7) creates the generic facts, using the source DBIF,

kept data, and source input rules. As each predicate in "gencon.rul" (Fig-
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Transiate Engine
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(With Kept Data) .:: ..................................

REVERSE
TRANSPORT

Figure 5.1. DR2-DR 1 Transport Test Case.

125




CProlog version 1.4d.edai
| Restoring file tranll.eav |

es

f'?- translate(’drl.dat’,'dr1K.dat’,'dr2.out’ 'dr2K.out’ ,exschRT,dz2,'3.0°,
'1/11/84:11:58').

drl.dat consulted 2248 bytes 0.65 sec.

>>Translate: V1.0 <<

dbid(schemex1,dr1,1.0,1/11/84:17:06}
drlin.rul consulted 2184 bytes 0.7 sec.
driK.dat consulted 3648 bytes 0.06667 sec.
fromdb(exschl,dr2,3.0)
todb(schemex,dr1,1.0)
Start Up 14.03 sec.
T=node(_1781) 12 facta.
T=npet(__1781) 7 facts.
T=box(_1781) 4 facts.
T=box _type(__1781) 3 facia.
T==net _type{__1781) 7 facta.
T=node __type[__1781) 10 facts.
T=node_dir{( 1781) 12 facts.
T=macro__call{_1781) 0 facts.
T=macro_def( _1781) 0 facts.
T==connected( _ 1781, 1782, 1783) 15 facts.
T=has_(_ 1781, _1782) 47 facta.
T=end_of _file 0 facts.
117 facts total,
Generic  7.87 sec.
{eep 9.88B sec.
Unload 1.35 sec.
dr2out.rul consulted 1748 bytes 0.61668 sec.
T=signal(_4509) 7 facts.
T=ndt(_4509) 10 facts.
T=bt{ 4509) 3 facts
T=body(_4560) 4 facta.
T=vertex{_ 4599, _4600,_ 4601, _4602) 15 facts.
T=vertex{ ~ 4599, _ 4500, _ 4601} 15 facta.
T=has{__4590, 4600) 16 facts.
T=end _of _file" 0 facts.
70 facts total.
dbid{exschRT,dr2,3.0,1/11/84:11:55)
Phase 2 18.83 sec.
Output Keep 14.6 sec.

Total time is 67.87 sec.

€3
?- halt.

| Prolog execution halted |

Figure 5.2. Prolog Output for DR2 to DR1 Translation.

ure 4.12) is read-in, it is echoed out as before with the number of facts
which were generated. The rules which are contained in "drlin.rul” (Fig-
ure 5.4) are used to derive the generic facts from the source DBIF and the

kept facts.



dbid(exschT,dr1,'10.0°,'1/10/84:14:53").
content( sugnal(s7)

signal(s6), connect(s7,c1,02),
signal s5), , connect(s7,b,y),
signal(sd), connect(s6,c1,01),
signal(s3), connect sﬁ,c,y),
signal(s2), connect(s5,b,il),
signal(s1), connect(s5,¢,i2),
pin{qn), connect(s5,a,qn),

pin{q), connect(s4,c,il),

pin(s), connect(s4,a,q),

pin(r), connect(s3,b,i2),

pin(o2), connect(s3,c1,i3),

pin(ol), connect(s2,a, s)

pin(y), connect(s2,c1,i2),

pin(i3), connect(sl,a r)

pin(i2), connect(sl,cl,il),

pin(il), hns(cl,conn),

comp __name(cl), has(c,t2),
comp _name(c), has(b,t2),

comp _name(b), has(a,t1),
comp _name(a}, dummy|)

comp _type(conn),
comp __type t’.’.},
t1),

comp _ type
Figure 5.3. Source DR1 DBIF (drl.dat).

net(X):-signal(X).

node _ type(X):-pin(X).

box(X):-comp_ name(X).

connected(C,S, N{ -keep(has _(N,P)),connect(S,C,P),pin{P),has(C,T),

keep(bas (T,
connected(C,S5,N):-1 conncct{S C,P),pin{P),\+keep(has (N, P)R
has(C,B),comp _ type(B),bas _(B,N],node(N).has _ (N.P).

node}x X},pln Y) keep(bas_{X,Y)).

nodel } :'-i pnn}P; \+keep(has _(X,P)},connect(S,C,P),has(C,B),
de(X):-var{X), rctra.ct(ud'(Byll’))c) el?s”:n'(n%?ll:l(n%?al:ﬁ::; node(X)),
" asserta(has g(X Py)),asurt_('haa {B, X)S

box __ type(X)-comp_ type{X).
- 1(S),keep(h S.X

e Ziﬁﬂisz S et (s»xn

gensymlnt__,X),assertalhas_ (5,X)).
de __dif{X):-var(X),k de__dir(X

Egd::dm }-:::}X; p::l: lgmiza: (;’dP)).)rxode(Y) geosym(adr __ X),

asaert Y. X))
_(X.Y) -var(x),var Y),comp nan\l’e(x),hu(x JY),comp_ type(Y),

(X, Y):-var({X), var(Y) ﬁeep(ﬁ-a: X
Figure 5.4. Source Input Rules for DR1 (drlin.rul).
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A closer look at these source input rules (Figure 5.4) indicate how
DRI1 predicates are mapped onto generic predicates. DR1 consists of the
following predicates: signal, pin, comp name, comp __type, connect, and
has. The generic predicates consist of net, node, box, net type,
node _type, box__type, node__dir, connected, and has__. Figure 5.5 shows
the mapping between these sets of predicates. For predicates which have a
mapping between the two representations, the translate rule is usually sim-

ple. (See the rule which translates "signal” to "net” in Figure 5.5)

signal — net
pin — node__type
comp__name - box
comp__type — box__type
connect - connected
has - has_
? — node
? — net__type
? — node _ dir
DR1 Generic

Figure 5.5. Mapping Between DR1 and Generic Predicates.

In some cases, there is a slight difference in meaning between the
DR1 and generic predicates which map onto onc another, and this is
reflected in the rule for translation. Consider the second rule for "connect-
ed" in Figure 5.4. Figure 5.8 illustrates this rule and shows the relation-
ships and the mapping between DR1 and generic predicates. In the case of
the DRI predicate "connect”, a “signal” is connected to the "pin" of a

"comp name”. However, the generic counterpart, “connected”, connects
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Generic

connected{Box,Net ,Node)

_

R1

connect(Signal,Comp_Name,Pin)

has_(Box_type,No

de)

has(Comp_Name,Comp_type)

—

has_(Node,Node_Type)

Figure 5.6. Mepping Between Generic and DR 1
Predicates for "Connect”.
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a "net" (S in Figure 5.4) to the "node" (N) of a "box__type" (B) which is
the type of "box"” (C). In this case, there is no “node” in DRI, but rather
a "pin" instead, which corresponds to a generic "node__type"”. The map-
ping between "node" and pin is established by the translation rule for

"node” (explained below), before the "connected” predicate is processed.

Another type of rule which is somewhat complicated, is that for the
generic predicates in Figure 5.5 which do not have counterparts in DRI.
Consider the rule for "node”. Figure 4.17 showed that in the generic
model, for every "box _type" there are one or more "nodes”, each of which
has a single "node _type”. In the DR1 model (refer to Figure 5.7), there is
no counterpart for "node”. The closest thing to a node is a "pin”, which
really corresponds to a "node__type". The first rule for "node”,

"node(X):-var(X),pin(Y),keep(has _ (X,Y))."
says that

if "Y" is a "pin” (i.c., generic "node type") and there is a
kept fact that "has (X,Y)", then "X" must be a "node”.

This is because there is only one entity in the generic model which “has" a

"node type" (see Figure 4.17).

The second and third rules for "node” (Figure 5.4) work together in
the event that no kept facts exist for "pins”. The second rule searches the
Prolog database, looking for all "pin" facts. Since the same pin name could
be used in different component types and there also may be more that one
instance of a given component type, the second rule finds all unique com-
ponent type-pin pairs. As each unique pair is found, the fact is entered
into the Prolog database as "nd(Body,Pin)". The "fail” clause at the end

of the second rule causes backtracking to occur until there are no more
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DRI

connect

<>

cannect

e

Figure 5.7 DRI Data Model.
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pins. At this point, the third rule begins. For each occurence of
“"nd(B,P)", a unique node name is generated. The unique name is asserted
as a node name, it is asserted that the node name has node type "P" (the
pin name from DR1), and it is asserted that component type "B" has node

name "X" (the newly generated unique name).

The same technique is applied to generate other data required in the
generic model, but not present in DR1: net type and node__dir. Once
each of the gencric predicates has been translated from DRI1, Step 3 is

complete and the file of generic facts is available for further processing.

Step 4 (Figure 4.7) creates any kept facts that would be lost in
translating from the source DBIF to generic facts. In this example, all data
represented in DR1 can be represented in terms of generic predicates. So,
there are no rules in “drlin.rul”, the source translate rules, for the predi-
cate "keep”. And, no kept facts are written out into the new kept data

file (dr2K.out).

Step 5 consists of resetting the fact/rule data base. In the system
log of Figure 5.2, this event is marked "Unload ... sec.” Next, Step 6 reads
in the generic facts that were created in Step 3 and also reads in the target

translate rules (dr2out.rul, Figure 5.8).

In Step 7 we generate target DBIF from the generic facts. To do
this, the target predicates are read-in, one at a time, and rules for each
predicate are applied to perform the translation. As was shown in Figure
4.17, all of DR2 has a counterpart in the generic model, except for the no-

tion of a vertex. However, there are some generic predicates which have no



signal(X):-net(X).
body(X):-box(X).
vertex(X, V1,1 -connected(d X,N),has _(N,Nt), vertex(Z Nt,V1,1},geavno(X,1).
genvno(Z,I): maxsval(Z )41 is J+1 retract(maxsva[(z ),
asserta(maxsval(z ).
genvno(Z,1):-asserta(maxaval(Z, l))
vertex(W X,Y,Z):-keep(vertex(W,X,Y,Z)).
vertex(B,Nt, [‘( Y|.1):- \+Leep(vertex(B Nt,V,1)),node typc([\'t,)
box(B),has_(B,Bt), bas _(Bt,N),has__(N,Nt),
gensym(coord,X),gensym(coord,Y), asscrta(vertex(B Nt,[X,Y],1))

ndt(X).-node _type(X).
bt{X):-box __type(X).

has(X,Y):-box _type(X),has _(X,Z),node(Z),has _(Z,Y),node__type(Y).
has(X Yg -box(X),has (X Y)_box type(Y).

node(X)) -node(X).

keep!
has -node{xlhas EXY ,node _type(Y).

keep!
keepl
keep
keepl

has _ -node(X),has node d|$Y)
has— -pet(X),has TX,Y), net typcé
has_ :-box _type(X),has_(X¥),no

X Y
XY

Figure 5.8. Target Output Rules for DR2 (dr2out.rul).

counterpart in DR2. This latter data will be stored away in Step 8. As
Figure 4.17 shows, the predicates "box", "box type", net, and
"node type" are easily translated into DR2. This is reflected in the sim-
ple target translate rules for "body"”, "bt", "signal”, and "ndt" in Figure

5.8.

The DR2 predicate "has" corresponds to a subset of the generic
"has " instances. The first "has" rule in Figure 5.8 corresponds to the re-
lationship between "bt" and "ndt". This relationship exists for every oc-
currence of "has_(Box__type,Node),has_(Node,Node type)” among the
generic facts. The second "has" rule in Figure 5.8 says that for every "box"
which has "box__type" then the corresponding "body" has the correspond-

ing "bt". The remaining generic "has_" facts are not translated into the

target (DR2) DBIF.
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The most complicated target output rules for DR2 are those for
"vertex". There are actually two "vertex" predicates: one for signals which
has 3 arguments and one for node types which has 4 arguments. The
first vertex rules processed are those with 4 arguments. These are used to
create vertices for nodes. After the vertices for nodes are processed, then

the vertex rules with 3 arguments are processed for signals.

The first vertex rule with 4 arguments in FFigure 5.8 checks to see if
the vertices for the node were saved from a previous translation. This as-
sumes that we are performing a reverse translation, which is the case in
this example. The second vertex rule with 4 arguments assumes that there
is no previous information stored about vertices, which would be the case if
this were the original translation from DR1 to DR2. In this case, the ver-
tex for a body-node type combination is generated. Two symbolic coordi-
nates (one for X and one for Y) are generated and assigned to the node.
There is only one vertex for a node, so by definition the {ourth argument is
1. After the target DBIF is created, the symbolic coordinates will need to
be assigned actual values in order to draw the schematic diagram

represented by the DR2 database.

After the 4 argument vertex rules, the 3 argument vertex rules are
processed for signals. The only "vertex” rule in Figure 5.8 used to generate
a vertex for a signal assumes that the signal is connected to a node having
a known vertex. This is illustrated in Figure 5.9. The last predicate in this
rule, "getvno", is used to generate a series of vertex numbers for signals,

since there are at least two vertices for most legitimate signals.

134



DR2 Generic

vertex(Signal,Vertex,No) connected(Box,Net,Node)
I | — |
genvno(Signel,No) I
[ has_(Node,Node_Type)

vertex(Body,Node_type,Vertex,1)

Figure 5.9. Mapping Between DR2 and Generic
Predicates for "Vertex".
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After all of the DR2 predicates are processed in Step 7 (Figure 4.7),
the target DBIF is written out (see Figure 5.10). This database is
equivalent to the original source DBIF that was shown in Figure 4.14 (ex-
cept for order), indicating that no data was lost in the translation from

DR2 to DR1 and back again.

dbid{exschRT,dr2,'3.0°,'1/11/84:11:55),

content([signal{s1), signal(s2),

signal(s3), signal(s4), signal(s5),
signal(s6), signal(s7),

ndt(i1), ndt r), ndt i2), ndt(s

ndt(i3), ndt q) ndt qn) ndt{y

ndt ol) ndt(o2

bt{conn), bt(t.l), bt(t‘;’)

body(cl), body(a), body(b) body/(c),
vertex(a,r,[10,90],1), vertex(a,s,[10,80]
vertex(a,q,[20,90],1}), vertex ,qn,[..O 80| 1)
vertex(b,il |30 40] 1),  vertex(b,i2,[30,20],1),
vertex b,y, 40,30 l) vertex(e, |l 50,80],1),
vertex(c,i2)|50,60], vertex(c ,y,(60 70] 1),
vertex(cl,i1,[0,90 l vertex(c1,i2,[0, 80] 1),
vertex(cl,i3, 0,.0] vertex(c1,01,{70, 70] 1)
vertex{cl o,..,[60 30] 1) vertex(s4,[50,80],1),
vertex(s5,[30,40],1), vertex(s1,|0 90] 1),
vertex 53, 30,20 ,l , vertex(s5,[50,60],2),
vertex(s2,(0,80],1), vertex(s3,[10,20 ,2 ,
vertex(s6,[60,70],1}, vertex(s7,[40,30{,1),
vertex{s6,|70,70},2), vertex(s7,{60,30(,2),
vertex(sl1,]10,90|,2), vertex{s2,/10,80|,2},
vertex(s4,(20,90],2), vertex(s5,/20,80},3},

has(conn,02), has(conn,ol), has(conn,3),
has(conn,i2),  has(conn,il), has(tl,qn),

has tl,q) has(t1,s), has(t1,r), has(t2,y),
has(t2,i2), has(t2,il), has(cl,conn},

has(a,t1), has(b,t2), has(c,t2),

dummy])

Figure 5.10 Target DBIF for DR2.

Next any rules for kept data are processed in Step 8 (Figure 4.7).
There are several "keep" rules in Figure 5.8, which indicate that there is
generic data which cannot be expressed in DR2. Any "node” facts are kept

along with 4 types of "has " facts: node-node__type, node-node dir,
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net-net _type, and box__type-node. These facts are stored in "dr2K.out",
the fourth argument of the "translate” call in the system log (Figure 5.2).

These facts are shown in Figure 5.11.

fromdb{schemex1,dr1,’'1.0').tedb(exschRT,dr2,'3.0°).

content([keep(has (t,2,node 1)), keep(has (t2,node _3)),
keep( _ t2,node__6)), keep(has__(t1,node_9)),
keep(has _(tI,node_ 10 keep(has_(t1, ‘node 11)),
keep(has_(t1,node__ ; keep(has_(conn,node _ 2
keep(has_(conn, node 4 keep(has _ {conn,node _
keep({has_(conn,node _ 7 keep{has_(conn,node_
keep(has__(s7,nt__7)), keep has__(s6,nt _6)),
keep(has_(s5.nt_5 keep(has _(s4,nt_4j),
keeplhas__{s3,nt__ 3 keep(has_(s2,nt_2

keep(has_(s1,nt_ keep(has_ node _8, ndr __8)),
keep(has_ node 7 ndr _7), keep(has_ node” __6,ndr_6)),
keep(has_(node_ 12,ndr_ l")) keepthas_ (node_ 11,nd7_11 },
keeplhas _ node_5, ndr_ keep(has _(node  10,ndr__10)),
keep(has_ (node__4,ndr__3 keep(has_ (node__3, ndr 4 ;
keep(has _(node_9 ndr_ keep(has_(node _ 2ndr_
keep(has__(node_ 1,ndr keep(has__(node 80..))
kecp*has_ node 7,01)) keep(has_(node”6,y)),
keep(has__(node__12,qn)), keep(has__(node _11,gj).
keep(has_(node_ 5,i3)),keep(has__ node_ 10, s))
keep(has_(node_ 4,i2)),keep(has__(node _3,i2 ;
keep{has_(node _9 1)), keep has_(node _ 2,11

keep{bas_(node_1,il ) keep(node(node 8”
keep(node{node 7)),  keep(node(node _6
keep(node node_12)) keep(node(node _ ;}
keep(node(node__ H keep(node(node _

keep(node(node keep(nede(node 3;;
keep(node(node keep(node(node__2)),
keep nodc node

dummyl).

Figure 5.11. Kept Data from the Generic to DR2 Translation.

The final step just resets the Prolog database and prints out the to-

tal CPU time taken for the translation.

This example is now complete. Several of the techniques required
for handling the mis-matches between data representations have been
presented. The remainder of the chapter describes additional test cases

which are more complex and show additional methods for defining transla-
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tion rules. The knowledge-based prototype steps are the same as used in

this example and shown in Figures 4.6 and 4.7.
5.2 TDL to PCB CAD Data Base

This second example concerns the transport of a TDL database to
the Hughes PCB CAD (HPC) system. The TDL language, described in sec-
tion 4.2.1, is used to describe schematic networks for logic simulation. The
HPC system data base is used to describe schematic networks for PC board
routing. While there is data in common, not all TDL entities are described
in the HPC system and vice versa. Figure 5.12 shows the source TDL file
in native format. The portion of the file of interest is in the "DEFINE"
section, which describes the network. Figure 5.13 shows the schematic di-
agram corresponding to this network. Using the TDL compiler described
in section 4.2.1, a DBIF representation of the TDL was produced as shown
in Figure 5.14. A few syntactical changes were made to the native data
such as converting TDL names (e.g., NAND-A) into legitimate Prolog con-
stants ("nand ___a"). At the expense of additional coding, these changes

could be eliminated. Figure 5.15 shows the TDL data model pictorally.

The HPC native data format is a relational data table quite similar
to DR1. Figure 2.7 shows the list of entities in the HPC data base. Since
this data base has the combined function of representing logical and physi-
cal classes of data, only a portion of the entities were used in this example.
These correspond to the DR1 data entties, and Figure 5.16 illustrates this
HPC data model.
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COMPILE;

OPTIONS CATALOG, XREF;

DIRECTORY RPH;

MODULE JKFF/GATE/1/RPH;

INPUTS CLOCK, J, K, P$, PC;

OUTPUTS 0Q, OQB;

DESCRIPTION THE MODULE IS A MASTER/SLAVE JK FLIP-FLOP
WITH PRESET AND PRECLEAR LINES. ;
"(SEE TDL REF. MANUAL P.71)"

DELAYS NANDEL/3,2,4/, NOT/3,2,4/;

"THE FOLLOWING TWO LINES CREATE TWO DIFFERENT TYPES
BASED ON THE PRIMITIVE ELEMENT NAND.

3-NAND 15 THE SAME AS NAND.

2-NAND IS DECLARED TO BE A 2 INPUT NAND. "

USE 3-NAND = NAND(3,1) /NANDEL/,
2-NAND = NAND(2,1) /NANDEL/;

DEFINE
DEV1{NAND-A) = &NAND{J,QB,CLOCK);
DEV2(NAND-B) = 3-NAND(K,Q,CLOCK);
DEV3(NAND-C) = NAND PS,NAND-A.NAND-D;;
DEV4(NAND-D} = NAND(PC,NAND-B,NAND-C
DEV5(I) = NOT(CLOCK);
DEV6{NAND-E) = 2-NAND NAND-C,!{;
DEV7{NAND-F) = 2-NAND(NAND-D,I
G-NAND(Q) = NAND(NAND-E,QB);
H-NAND(QB) = NAND(NAND-F,Q);
DEV8{0Q) = NOT(Q);

DEV{OQD /1/) = NOT(QB);

END MODULE;

END COMPILE;

Figure 5.12. Source TDL I'ile in Native [Format.

5.2.1 Data Mapping

The first step in transporting data between two formats is defining

the mapping between their entities. From the mapping comes the rules
which are used to transport the databases. An example was shown in Fig-
ure 4.17 for the mapping between DR2 and the generic form. In this exam-
ple, mappings are needed between TDL and the generic format (Figure

5.17) and between the generic format and the HPC (DR1) format (Figure
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dbid("jk" tdi,"1",'2/21/84:10.05").
content([dcscnpt class(gate),
dir _name('rph

pin_dir{in),

has("clock’,in),

has 'I:',in),

bas(' pc .in),

has('oq’,0

has(’ i) |n),
bas('ps’,in),
pin__dir{out),
has{"oqb’ oul.)

out),
dese(’ THE MODULE IS A MASTER / SLAVE JK FLIP-FLOP WITH PRESET

delay(’nandel’,3,2,4,"/"),

use('dig__ _3_ _nand’,)’="’
use{'dig_ __2_ na.nd’,'= 'nand’,2,
occ_name{’devl

has("dcvl 'dig _ nand'),

connect('devl’, 5‘ in,'d"),

oce namc('dev?')
has("dev2’ dig_ 3 nand’),
connect('dev2’ Tﬁ'—in,’é')_.
occ__name('devd’),
baa(rdev'i' 'nand’},
connect('devd’,'nand _

oce _name('devd’ ),
has(“dcvf nand’),

connect('dev4’, 'nand _ _b%in'2"),

occ _name(" dev5’)
has("devs’, ‘not’),

acc na.me( devé’ )
ha.s(rdcvﬁ' ‘dig
connect{'dev6’, V', in, r‘f’)—
oce name( dev’ )
hau(’d:ﬂ dig
connect('dev?’ 1" 1n 2y,
occ _name('g
has{g _ _nand _"nand'z’,
connect('g nand’,'qb’,
occ _name('h_
has(’h_ nand’."nand’),
connect{'h
occ_name{'dev8'},
has(*dev8’,'not'),

occ _name('devd’),

connect 'dch'.'oqb',oul.,’l'),
connect('devd’,’qb’,in,’1’),
pin ’oqb

pia{pe’},

pin 'k')

pin'clock’

signal qb

signal 'nand__f’).
signal('i'),
signal('nand _ __¢'),
signal 'nand_
device('not’),
device('dig 2
ext _out puT( oq

nand’),

na.nd').

c'u_.ln pin('pc’),
ext__in_ pin('k’),
ext _in_ pin(’clock’),

_a'in,"2%),

AND PRECLEAR LINES. ; ),
delay('not',3,2,4,/"),

nand’,3,1,n0ne,'nandel’),
1,none,'nandel’

connect 'devl','nand a'out,'1’),
connect('devt’’''in,'1
connect('devi’ ’clock' in '3},
connect('dev2’,'nand b'out,’'1’),
connect('dev2','k’ in, I'T
connect('dev2’, 'clock’ in,'3'),
connect 'deva'.'na.nd ¢’ out,'1’),
connect('dev3’,’ps’,in,’1"},
connect('dev3’, 'nand d’ in,'s’ )
connect('dev4’,'nand ~ ~d", out 1),
connect('dev4’ 'pc’ m?f‘),
connect('dev4’, "nand c’,in,'3’),
connect('devs’,'V’ out_rlT)
connect{"dev5’.'clock’ in,’ L ')
connect{'dev6’, 'nand c out,’1'),
connect(’dev6’,'nand _ _ ¢'in, 1')
connect('dev?’ 'nand _ _ {',out, l')
connect(’dev?’,'nand _ d' in,'1"),
connect{'g _ _ nand’,'q’ out,’'1’),
connect('g _ _nand','pand _ _e',1n,"1’),
connect('h nand’,'qb’,out,'1’
connect('h_ _nand',"nand ___{ n:,'l'),

conneci('devB’ 'oq’,0ut,'l"),
connect('dev8’’q',in,’1"),
delay('dev0’,'1" 1,7/},
has(’dev9’,'not'},

pin('ps’),
pial’j'),

signal q)

signal{'nand _ _e¢'),
dl
b

Pmi oq’),

signal(’nand _ R
signal(’nand _ _b"),
device('nand’),
device('dig 3
ext _out puT(oE‘),_
ext _in pm{ ps'),
ext _in_pin('}'),
dummy][).

nand'),

Figure 5.14. Source TDL DBIF.
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Figure S.16. HPC Data Model.
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5.18). From the TDL to generic mapping it is clear that some TDL infor-
mation must be kept, since there is no generic counterpart (e.g., "order").
Likewise, there are generic predicates without TDL counterparts. These

must be generated during the translation (e.g., "node”).
5.2.2 Forward Rules

With an understanding of the data models and mappings, rules can
be written for translation. The rules for transporting TDL into the
translate engine are shown in Figure 5.19. The TDL predicates with gener-
ic counterparts are relatively straight-forward (i.e., "box", "box__type",

[ LI ]

node _type", "node _ dir", "has”, and "connected”, see Figure 5.17).

" LU

net”,
One complication to these rules is required to handle TDL external pins,
since there is no name given to the signals which connect to these pins, and
there is no device to which these external pins are assigned in the TDL
model. This is shown pictorally in the schematic diagram of Figure 5.13.

" " "

Consequently, the translation of "box", "box__type", "net", "node type",
and "node _dir" is more than just a series of one-to-one mappings. The
remainder of this section describes the rules for translating TDL into the

generic form.

Rules 1-9 (Figure 5.19) generate node names. Rules 2 and 3 create
nodes for external pins. A unique node name is generated and it is assert-
ed that device "exterior” "has" the node and that the node has the pin,
which becomes the node__type. Rule 4 looks for unique occurrences of
each device type. Each pin connected to a signal is associated with its ap-
propriate device. Since devices may be used more than once, the pin name,

device pair must be accounted for once. Since pin names are not always
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3
/* 30
o2
o34
/* 35
;‘ 36
* 37
/2 3

/e 40

[t 41

ARER
Jo 44

node(X):-var(X),nd2(X).

nd? Xg i-ext _in_ pin{Nt},nd3(X exterior,Nt).
nd2(X}:-ext ~out _pin t) nd3{X,exterior,Nt).
node{X)-var(X),device(T),has(B T} connect(B S,D,N),0d4(D,N.R),

asst _uniq{ndsv(T, R
node(X):-var(X),retract{ndsv(T, N)) ndS(X T,N).
nd3(X, T,Nt): -gensym(node LX), asacna(nodc(X)) asserta(has _ (X,Nt)),
asserta(has X

nd4(D,N,N}:- \+nd5(N).
nd5{N):-name{N,[H|T}),H> 48, H<58, T==]].

net(X):-signal(X).

net(X):-var(X),ext _out_ pin(S),0et2(S,B,X,D,N},asserta(connect(ext,X,out,S)).

net(X):-var(X},ext _in_ pin(S),net2(S,B,X,D N) asserta(connect(ext X,in,S}).

net2(S,B X,D N) -connectﬁﬂ ,S,D\N gensym(net X, :lsserta(sngna.l()())
asserta(conncct B X D

/ nd4;D N, R; ndS(N),concat(D N ,R).

box{){) :-occ namc(X;
box(ext):-ext _ pin{

box _type(X):-device(X).
box _type(exterior):-ext __pin{_ )

net _type(X):-var{X),keep{net _type(X)).

net_type%X;:-va:} ; algnpa(l(Y} gengy(mznt ,X),asserta(bas_(Y,X)).

N):-var{N),pin{N),asst _uniq{n __t(N}),Tail.

N):-var{N).connect(B,5,D,R),nd4(D,R,N),asat __unig(a_ t{N)).fail.
retract(a_ t(N)) asserta(node type(N)).

node__type
node__type

node _type

node _ dir{X):-pin _dir{X),asst _uniq{o _d(X)})fail.

node _ dir{X -connect(BSXNT\+p:n dlr(X)as:lt uniq{n _ d(X)),fail.
node_dir{X):-retract(n_d(X)).

connected(B,S,X):-connect(B,S,D, Nz ,signal(S),ud4(D,N,R),node __type(R),
as(B T) devnce('l"I baa T,X), node}X),has X,R).
connected(eu S,X):-connect{ext,S,D N) signal(S),node type(N),has__{X.N).
no c(X) has (extenor X)

has_ {X,Y)-bas(X,Y),0cc name(X) device(Y).
has_(N,ND}:-var(N lZ\‘ra._(l‘\l has(N’I’ ND),pin __dir{ND},has _(N,NT),
asst __uniq{hx{N,ND}} fail.
_(N,ND}: va.r(ND),var(N) conncct(B S,ND,NT},0d4(ND,NT,R).has _ (N,R),node(N),
asst _uniq(hx({N,ND )
bas {N ,ND):-retract{bx(N,N
has _ (ext,exterior):-ext pln(

N):-var(N},

ext _ pin{X):-ext _in_ pig(X),\
ext _ pin(X):-ext _out _ pin{X),!

239t _ uniq(X):-retr(X),asserta{X).

keep(dir __name(X)):-dir _ name(X)

keep(descript _class{X)):-descript _class(X).
keep(desc(X)):-desc(X).
keep(delay(A,B,C)):-delay(A,B,G).

keep(delay(A, D)}:-delay(A,B,C,D).

keep(delay(A, D.E}). dclay(A B,C,D,E}).
keep(delay(A, D,E,F,G H)): -delay(A B,C,D.E,F,G,H).
keep(use(A,B, EF, G)) ‘usc(A B.C, DEF.G

B asEXY ext _in_pin(X dir(Y).
-has(X,Y),ext —oul’ ptn(erln dir(Y).

B,C,
B,C,
B,C,
CD,
keep{has(X -b
kccp has(X

keeplext :n pm(X))-cxt in__pia(X
keep(ext _out__pin(X))-ext_out pm(X)

Figure 5.19. TDL Source Input Rules.
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provided, rule 4 invokes "nd4" to generate a pin name from the pin direc-
tion and order. Rule 5 takes each unique device/pin pair and generates a
unique node name which is linked to the device and tol t‘he node type with
a "has " clause (using ruie 6). Figure 5.20, the gencric equivalent to the
TDL schematic, shows the unique node names which were assigned the

varous nodes in the generic form of the TDL schematic.

For "net”, rule 10 is a one-to-one mapping. In the event of external
pins, rules 11-13 create net names for each external pin. Rule 11 and 12
are identical, except that 11 covers external output pins and 12 covers input
pins. In each case, a "connect"” clause which references an external pin as
its “signal” name (second argument) is converted to a connect clause which
references a unique (generated) signal name which is connected to the
external pin. A new connect clause is added which identifies the newly
created signal name as being connected to the external pin on device "ext"

with the appropriate direction (rules 11 and 12).

Rule 14 is the simple, basic rule for transforming an “occ_name"”
into a "box" as shown in Figure 5.17. Rule 15 is also needed to create a
“box" name "ext" in the event that there arc any external pins in the in-
coming TDL. (The "!" at the end of rule 15 will keep the translate engine
from generating multiple occurrences of "box(ext)” due to more than one

external pin).

Rules 16 and 17 for “box __type" are very similar tc those for "box".
Rule 16 is a one-to-one mapping with "device". Rule 17 creates a new

"box _type”, "exterior”, if there are any external pins.

148



Do

‘weubeig anewayss
7QL 01 yuaieainb3 o143usg gz'g a4nbi4

Sd

Id A2071]
| ~apou G~ apou k
6 13U
lgmeyl | B
r
W
c1igu
J-aNwN
I~
ey o 81 - 3
=1l o o £l L1 Mgy g |38 2
o m < o
Z 61 EVm_ / YA /:Aw_ a
= —_ — Jo—
- g—1au
8A30 S l3-guwn R RN
Z_opou

149



Rule 19 creates net types, one for each signal. Rule 18 provides a
way of retrieving kept net types in the event that this is a reverse transla-

tion.

The rules for "node type" look at every pin (rule 20) and every
connect clause (rule 21) for unique “node _type" names. In this particular
example, only the cxternhl pins arc explicitly declared to be pins in the
DBIF (Figure 5.14). No other pins are identified by name. Instead, the
pins are implicitly declared by their position in the Define statement (Fig-
ure 5.13). For example, the first clause in the Define statement identifies
three input signals, "J", "QB", and "CLOCK". These are numbered 1-3,
respectively. This numbering is reflected in the source DBIF in the "con-
nect” clauses. The first argument of the connect clause identifies the oc-
currence name, the second argument identifies the signal, the third
identifies the direction of signal flow, and the fourth identifies the input
source. This can either be an explicit pin or implicit pin position in the
define clatse 5-1) In order to create pin names (node types) for each input
and output of a device type, the pin direction and order are concatenated
(rules 21 and 7-9). Having identified all unique "node__ types”, rule 22 adds

these to the data base.

The rules for "node__dir" (rules 23-25) look at every pin__dir clause
and every connect clause for unique direction values. In general, the only

two directions will be "In" and "out". Sometimes the direction "inout" will

1) Refer to Appendix H which describes the TDL syntax,
especially, the "<source-pin match>" vs. the "<input
source>" constructs.
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occur for bi-directional signals. These rules work in the same way as the

rules for "node _type".

The rules for "connected” are illustrated in Figure 5.21. Rule 26
corresponds to pins which are not external. Rule 27 handles external pins.
Note that the execution of these rules must occur after the execution of the

"node"” rules which create many of the "has__ " facts.

Rules 28-32 create the "has " facts, except those which relate to
"nodes” which were created in rule 6. Rule 28 is apparent from Figure
5.17; the "has” relationship between "oce names” and “"devices” is analo-

gous to the "has_ " relationship between "boxes” and "box types”. Rule
20 translates the TDL “pin has pin__dir" into the generic "node has
node _dir". Note that since TDL "pins” are not equivalent to generic
"nodes”, the mapping must be performed via generic "node types” {see
Figure 5.17). Rule 30 also translates the "pin has pin__dir" like rule 29,
but for those pins which are not explicitly declared to have a pin direction.

This is the case when a pin is implied to have a pin direction in a connect

clause.

The remaining rules in Figure 5.19 deal with data which must be
kept or must be created in translating from TDL into generic form. Rules
36-43 and 46-47 store as kept facts those with predicates "dir_ name",
“descript _class”,  "desc", "delay”, "use”, "ext in_pin", and

"ext _out__pin". Rules 44-45 store "has__ " facts which deal with external

pins.
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TDL GENERIC

connect(Occ_name,Signal,Pin_dir,0rder) connected(Box,Net Node)

| ' |
nd4{Pin_dir,Order,Node_type) has_(Box_type,Node)

has(0Occ_name,Deavi
( ° ev'we) has_(Nade,Node_type)

connecl(Ext,Signal,Pin_dir,Node_type) connected(Ext Net ,Node)

| J I

has._(No'de,Node_tgpe)
J

l

hes_(Exterior,Node)

Figure 5.21. Rules for "conntected” in Translating
TDL into Generic Form.
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The rules for translating generic facts into HPC DBIF are the same
as the DR1 target output rules shown in Figure 4.20. These rules are
simpler than those for TDL and this is reflected in the data mapping
shown in Figure 5.17. These rules have already been explained in section
4.3 at the end of Chapter 4. It is noteworthy that these rules were
developed independently, without taking into consideration which system

was used to create the generic facts to begin with.
5.2.3 Reverse Rules

In order to demonstrate that no data is lost using the translate en-
gine, a set of reverse rules is also required. One set of rules converts HPC
(DR1} into generic facts, and the other creates TDL DBIF from a set of
generic facts. The source input rules for DR1 have alrecady been used and
explained in section 5.1. This same set is used in this DR1-TDL case as
well. The target output rules for TDI, DBIF are shown in Figure 5.22.

The remainder of this section discusses these rules in detail.

Rule 1 maps generic "nets” onto TDL “signals" except for the case
that the net was generated to connect an external pin to the interior of the

module.

Rule 2 creates TDL "devices” from generic "box__types" unless the

box type is the generated type "exterior"”.

Rule 3 and 4 handle external input pins. Rule 3 recreates an exter-
nal input pin, if one exists in the file of kept facts. Rule 4 will create an
external input pin if no kept fact exists and if the convention of naming

the generic box type "exterior" is followed.
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/* 1 */ signal{S)=-net(S),\+connected(ext,S,Nt).
[* 2*/ device(D):--box _type(D),D\===exterior.

/* 3*/ ext_in__pin(EIP):-var(EIP),keep(ext__in_ pin(EIP)).
/* 4*/ ext_in_pin(EIP):-var(EIP),\+keep(ext_in_ pin(EIP)),has__{exterior,N),
has__(N,in),has _(N,EIP),node __ type[EIP).

*/ ext_out_ pin(EOP):-var(EOP),keep(ext _out_ pin(EOP)).
*/ ext_out_pin(EOP):-var(EOP),\+keep(ext__out__pin(EOP)),
has__(exterior,N),has__(N,out),has__[N,EOP),node__type(EOP).

/* 7*/ pin(P):-node_ type(P),\+ntgen(P, _,_ ).
/* 8 */ pin_dir(Pd):-node_ dir(Pd).

/* 9*/ dir_name(X):-keep(dir_ name(X)).

/* 10 %/ descript__class(X):-keep{descript__class(X)).
J* 11 */ desc(X):-keep(dese(X)).

/* 12 */ delay(A,B,C):-keep(delay(A,B,C)).

/* 13 */ delay(A,B,C,D):-keep(delay(A,B,C,D)).
/* 14 */ delay(A,B,C,D,E}--keep(delay(A,B,C,D,E)).

/* 15 */ delay(A,B,C,D.E F,G H)-keep(delay(A,B,C,D,EF,G,H)).
/* 16 */ use(A,B,C,D,EF,G)-keep(use(A,B.C,D.E,F,G)).

[* 17 */ occ_name(X):-box(X),X\==ext.

[* 18 */ connect(W,X,Y,Z):-connected(W X.N),W\==cxt,signal{X),has__(N,Nt},
node _type(Nt},ntgen(Nt,Y,7).

/* 19 */ connect(D,EP,Dr,P)-connected(D,S,N),D\==ext,connected(ext,S,Fp),
has_ (Fp,EP)node__type(EP),has_ (N,Nt),node__type(Nt),
ntgen(Nt.Dr,P).

/* 20 */ has(X,Y):-has__(exterior,N),has2(N,X.Y).

/* 21 */ has2(N,X,in}-has_ {N,in),has__(N,X),node__type(X).
/* 22*/ has2(N,X,out)-has_(N,out)has_ (N,X),node__type(X)
/* 23 */ has(On,D):-occ_name(On),has_ (On,D),device(D).

/¥ 24 */ ntgen{Nt,in,Z):-name(Nt,Ntl),append("in",Z1,Ntl),name(Z,Z1),integer(Z).
/* 25 */ ntgen(Nt,out,Z):-name(Nt,Ntl),append("out",Z,Ntl),name(Z,21),integer(Z).

Figure 5.22. Target Output Rules for TDL.

Rules 6 and 7 are analogous to rules 3 and 4, but for external output

pins.

Rule 7 creates TDL "pins" from generic “node types” unless the

pin is a previously generated pin of the form {"in" | "out"} "integer” (e.g.,
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"out2").

Rule 8 is a one-to-one mapping from generic "node_ dirs” to TDL

"pin__dirs".

Rules 9-16 recreate kept TDL facts if they were previously saved

and stored in the file of kept facts.

Rule 17 creates a TDL "oec__name” from a generic "box" if it isn’t

the generated "ext" box.

Rules 18 and 19 translate between the TDL "connect” predicate and
the gencric predicate "connected”. These rules are shown pictorally in Fig-
ure 5.23. Rule 18 deals with net-node pairs which are not on the exterior
of the module, and where the node_type was implied in the original TDL
(i.e., the node_type was generated from the pin direction and its order).
Rule 19 reduces two generic "connected” clauses which tie an external pin
with an internal pin via a generated net into a single TDL "connect” clause
which references an external pin name instead of a signal name as its

second argument.

Rules 20-23 translate "has " clauses back into TDL. Rules 20-22
create facts of the form “external pin has pin _dir". Rule 23 translates the
generic "box has box _type" into the TDL "oce__name has device”. There
is no rule to create the TDL "pin has pin_dir" for non-external pins.
However this relationship is implied in the "conncet” facts where a pin is

explicitly given instead of an implied order.
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DL GENERIC

connect(Occ,Signal,Dir,0rd) connected(Box,Net,Node)

I
\==(occ,"ext") has_(Node,Node_type)

ntgen(Node_type,Dir,0rd)

RULE 18

connect{0Occ,EP,Dir,0Ord) connected(fo,Net,Node)

connected("extl",Net FP)
\==(0cc,"ext")

has_(FP,EP)
ntgen{Node_type,Dir,0rd)

node_tgpe(ElP)

|
has_(Node,Node_type)

|

RULE 19

Figure 5.23. Connect Rules from the TDL Target Cutput Rules.
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Rules 24 and 25 are used by the connect rules to determine if a node

type was gencrated by concatenating the pin direction with the order.
5.2.4 Forward Translation Results

Utilizing the forward rules, the translate engine first produced the
set of generic facts shown in Appendix L from the source TDL DBIF (Fig-
ure 5.14). There are facts for every generic predicate including those for
"node" and "net__type”, which have no TDL counterpart. Also, nets were
generated for external pins, which do not have signal counterparts in TDL.
Thus the generic model is complete and ready for translation into another
CAE/CAD/CAM data format. The prototype system log is shown in Fig-
ure 5.24. The specific number of facts of each predicate type is shown and

it is reported that there are a total of 219 generic facts .

In order to be able to return back to TDL at a later time with this
database, several TDL facts were kept aside since they couldn't be
translated into the generic form. These are shown in Figure 5.25. Includ-
ed are facts regarding "external pins", "has" relationships, "use", "delay",

"desc”, and "descript _ class”.

The second phase of this transport problem is to translate the set of
generic facts into HPC (DR1). Using the forward rules (Figure 4.20) ap-
plied to the set of generic facts yields the target DBIF shown in Figure
5.26. All of the DR1 predicates in Figure 5.16 are represented. All of the
TDL symbolic names in the original TDL database are apparent in this
DRI1 representation. Also, names generated in the translation from TDL to

the generic form have also carried through (e.g., "signal(net 8)"). The
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CProlog version 1.4d.edai
[ Restoring file /u/ua/hooper/tranli.cnv |

yes

| 2- translate("jk.dat’,'jk.out’,’jkK.out’,jkff,dr1,’2.0",'4/11/84:13:57").
jk.dat consulted 3148 bytes 0.85 sec.

>>Translate: V10 <<

dbid(jk,td1,1,2/21/84:10:05)

tdlin rul consulted 5112 bytes 1.9 sec.

Start Up  5.05 sec.
T==pode(__1021) 20 facts,
T=net( 1021) 18 facta.
T=box{_ 1021} 12 facts.
T=box _type(_ 1021} 5 facts.

=net __type(_1021) 18 facts.

T=node _type{_1021) 11 facts.
T=node__dir{ _1021) 2 facts.
T=macro _ call{ _1021)} 0 facts.
T=macro_def(_1021) 0 facts.
T-=connected( _ 1021, 1022, 1023) 43 facts.
T=has _(__ 1021, _1022) 907Tacta.
T=end _of _file "0 facts.
219 facts total.

Generic  31.15 sec.

Keep 1.72 gec.

Untoad  3.72 sec.

driout.rul consulted 920 bytes 0.33336 sec.
T=signal{ _ 4276} 18 facts.
T=pin(_ 4276) 11 facts.
T=comp_ name(_ 4276} 12 facts.
T=comp_type(_4276) 5 facts.
T =connect(_ 4276, 4277, _4278) 43 facts.
T=has(_ 4276, _4277) 12Tacta.
T=ecnd _of _file 0 facts.
10t facts total.

Phase 2 17.03 sec.

Output Keep 8.25 sec.

Total time is 68.33 sec.
e3
?. balt

[ Prolog execution halted |

Figure 5.24. Prototype System Log for
Forward Translation (TDL to DR1).

system log (Figure 5.24) shows that 101 DRI facts were created from the
set of generic facts. Utilizing the DR1 formatter presented in section 4.2.1,
a file of records can be produced which is readily loaded into a native HPC

format (relational DBMS).

The data mapping of Figure 5.17 shows that there are generic facts

which do not translate into DR1. These are appended to the previous set
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fromdb(jk{,tdl,'1
todb{jkh,dr1, 2.0’

}

contcnt([kecp {ext __out _ pin(oq}), keep(ext out__ pin{ogb}),

keep(ext _in_ pin{clock)), keep(ext _in_ pin(1)),

keeplext _in —pin{k)), keep(ext _in__pin(ps)),

keep(ext _in__pin(pc ) keep(connect{ext,net _1,0ut,oqb)),

keep{has(ogb, ,out)), keep(has(oq,out)),

keep(has{pc,in)),  keep(has(ps,in}),

keep{bas(k, mL keep(has(), m))

keep{has{clock,in)),

keep(use(dig __ _2 nand,=,nand,2,1,none,nandel }

keep{use(dig_ _ 3_ _ nand,=,nand,3,1,none,nandel

keep(delay(not,3,2,4,0)), kcep(dclay(nandcl 3.2.4 /))

keep delay dch 1, l

keep(desc{'THE 'MODULE IS A MASTER / SLAVE JK FLIP-FLOP WITH
PRESET AND PRECLEAR LINES, ; '}),

keep{descript _ class(gate)),

keep(dir_name(rph}),

keep(has_ (not,node _20)), keep(has_ {not,node_19))

keep(has_ nand,uode_ls , keep({has _ nand,nodc_l't';;,

keeplhas _ (nand,node_16}), keep(has_ (nand,node__15)},

keep(has__(dig __ ___ﬁ__nand,nude_l-l ,

keep(han_ (dig_ _2__ _ pand,node 13 N

keep(has _(dig_ _ 2~ _pand,node_12)),

keep(has " {dig” — 3~ _nand,node__11}),

keep(has {dig_ 3 nand,node__10)),

keep(has _(dig__ 3_ __nand,node

keep{has _(dig _ = nand,node _ 8

keep{has __ ext.cnor node 7 , keep has _ (exterior,node _ 6)),

keep(has _(exterior,node__§)), keep(has exterior,node _4)),

keep{bas _ extenor,node 3 , keep has exterior,node _ 2)),

keep(bas__(exterior,node__1}), keep{has " (gb,nt IO))

keep(has _(q,mt _11)}, kccp(has (nand _ _f,nt _12)),

keep(bas _(nand___e,nt__ eep(has (i, nl. 14)),

keep(bas _(nand “d,nt_ B keep(has_(nand _ _c,nt _ {;

keep(bas_ (nand_ _b,nt keep(has " (nand_ _a,nt_

keep(bas _(net _T,nl_0)), keep(has_(net_2,nt_8

keep(has _{net 3 ot~ 7)), keep(bas_(net_4,0t”_6

keep(has _(net 5 nt_5)), keep(bas (net 6,0t 4

keep(has_(net _7,nt_3)), keep(has _(net_8,nt_2

keep(has” (net_g,nt_1)), keep(bas__(node_ 1,in)),

keep(has _(node _2,in } keep(has _(node _3,in)),

keep(has _(node_4,in keep{has _(node_ 5,in)),

keep(bas _(node 6 out)) keep(bas _(node _7,0ut)),

keep(has _(node 8 m)) keeplhas__(node_ 9,in)),

keep(bas—_(node 10,in keep(has _(node ll,out))

keep(bas _ (node 1...m keep(bas _(node _ _13iin

keep(has _{node 14 out)) keep(has_(node_15,in

keep(bas _(node 18, |u}) keep(has_(node 17 out))

keep(bas _{node__18,in})) keep(has _(nade _19,in)),

keep(has _(node _20,0ut})), keep(has _(node 1 pc)

keep(has _(node _ 2,ps)), keep(has_ (node” 3,k

keep(bas _(node _4,})), keep{has _ node 5 clock))

keep(has _(node_6,0qb)),  keep(has_(node 7 0q)),

keep(bas__(node _ 8,in3)), keep(has_ (node _9,in2 )

keep(has _(node 10, ml}; keep(bas_(node 1 ,outt)),

keep(bas_(node 12,in2 keep(has_(node 13,inl ;

keep(has_(node_ 14,0ut1)), keep(has _(node 15,in2

keep(has _(node _ 16,inl } keep(has _(node 17 outl))

keep(has _(node 18,in3 keep(has __{node_ 19,in1)),

keep(has " (node20,0utl)), keep(node_ dir{out)},

keep node _ dir(in}),

dummy}).

Figure 5.25. TDL and Generic Kept Facts.
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dbid(1jkff,dr1,’2.0",'4/11/84:13:57").

contcnt([s:gnal(net 0), sngnal(net 8), signal(pet __7),
signal(net _6), “signal(net signal(net _4),
signal{net 3}, \ signal nct 2 signal(net 1),
signal(nand_ _a), signal(nand ), signal(nand _ _c),
signal(nand _ , signal(i), signa uand __e),

signal nand _ _f), signal(q), signal(qb),

pin(clock), pin(j),  pin(k),

pin(ps), pinfpc),  pin{oq),

pin{ogb), pin(ind), pin(in2),

pin{outl), pin{inl), comp__name(ext),

comp __name devo) comp__name(dev8), comp _name(b _ _nand),
comp__name(g__ _ nand s) comp__name(devT), comp_ name( :vﬁ)

ev4), comp _name(dev3),

comp_ name(dev5]), comp__name
devl), comp_ Lypcfﬂtenor),

comp__name dev.. comp name

comp _type(dig _ _nand), comp _type(di _nand), comp_ type(nand),
comp _type(not), conncct(nct 1,ext,0qb), counect(_ct 2,ext,0q),

connect(net _3,ext,pe), connect net _ 4 ext,ps), counect net _ 5,ext, k},

connect net_ﬁ.ext.j). connect{net _7 ext clock) connect(net _ 8 ext,clock),

connect net_Q,cxt,cIock \ connect{qb, deve ml), cannect(q,devs lnl)

connect(q,b__ _ nand,in2), connect{pand _ _fh__ __nand,inl), connect qb h_ _nand,outl),
connect(qb,g__ nand ,n2), connect{nand _ " e,g_ _ nand,iznl), connect(q,g__ mand oul.l)
connect :,dev'.’ 102), conpect(nand _ _d, dev7,inl), connect nand 1. dev?, outl
connect(i,dev6,in2), connect{nand _ ¢, devs 1nl connect(nand_ e, dch outl),

connect i,dev& ouLl) connecl(nand ¢,dev4,in3), connect uand b, devA,i ,in2),
connect(nand _ __d,dev4,cutl), connect(nand d dev3,ind), connect pand a,dev3,in2),
connect{nand _ _¢c deva outl) connect(q,dev3, :n2) connect(nand _ b,devs ¢ ouu)
connect{gh,devl in2), connect(nand a,devl,outl), connect(net l dev9,outl),
connect(net _2, dcvs outl), connect(net 3 HEM inl), connect net _ 4,devd, inl),

connect net_s,devi’,inl R connect(net _6, devl inl), conoect(net _7.devl,in3},

connect{net _ B,dev2,in3), connect(net _9.dev5.ini; i has{ext, exterior),

has(dev0,not}, ha:(dev8 not), has(h nand nand)

has(g _ _ nand,nand}, has(dev7,dig_ "2 _ _ nand), has{dev6,dig__ _ 2 _ _nand),

has{dev5, not), has(dev4,nand),  has{dev3,nand),

has dcvl.dlg _3 _ _nand), bas(devl,dig_ _3_ _ nand), dummy|}.

Figure 5.26. Target HPC (DRt) DBIF.

of TDL kept facts in Figure 5.25. Specifically, there are "has " facts and
“node__dir" facts which do not translate, so they are kept for later reverse

translation.

Once the HPC database is available, additions, changes, or deletions
may occur before the database is transported back to TDL. In this exam-
ple no changes were made in order to verify that all data was transported

forward and backward without loss.
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5.2.5 Reverse Translation Results

Using the same HPC results and the file of kept facts, the translate
engine is invoked again. This time, generic data is created from the HPC
(DR1) database. The logical content of the generic database created this
time is identical to that created during the forward translation. However,
the specific order of the facts is changed due to the order in which the
rules are processed. The system log for this reverse translation is shown in
Figure 5.27. Again, 219 generic facts were generated which matches the

number of generic facts created during the forward translation.

At the end of "Phase 2", it is reported that there were 100 TDL
facts generated, which again points to the differences between TDL, DR1,
and the generic form. The resulting TDL facts are shown in Figure 5.28.
While the order of the facts is different than that of Figure 5.14, the source
TDL DBIF and the target TDL DBIF are logically equivalent. This proves
that the translate engine and the knowledge base (rules) work together to
transport the data without loss. 'In this reverse translation, no kept facts
were generated, but rules could have been added to preserve the original

generic nodes and net _types created during the forward translation.

This completes the second example of using the knowledge-based
prototype transport system. Next, the techniques shown for keeping data
and creating missing data are used on a more complex example involving

layout data.
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CProlog version 1.4d.edai
[ Restoring file /u/ua/hooper/tranll.env |

€3
?- translate('jk.out’,"jkK.out’, jktdl.dat’, jktdli<.dat’, jkff,td],’2.1° "4/11/84:15:47").
jk.out consulted 2680 bytes 0.43333 sec.

>>Translate: V10 <<

dbid(jkf,dr1,2.0,4/11,/84:13:57)
drlin.rul consulted 2184 bytes 0.43333 sec.
jkK.out consulted 4088 bytes 0.63333 sec.
fromdb(jkf,tdl,1
todb(jkf,dr1,2.0
Start Up  8.32 sec.
T=node( _ 1803} 20 facts.
T=net( _1893) 18 facts.
T=box(_ 1803) 12 facts.
T=Dbox _type(__1893) 5 facts.
T=net _type(_ 1893) 1B facts.
T=node _type[__1803) 11 facts.
T=node _dir{ 1893) 2 facts. -
T=macro__call{ _1803) 0 facts.
T=macro_def(__1883) 0 facts.
T=connected(_ 1893, 1804, _1895) 43 facts.
T=has__(__1803, _1864) 907Tacta.
T=end_of_file 0 facts.
210 facts total.
Generic  8.55 sec.
Keep  5.42 sec.
Unload 0.75 sec.
tdiout.rul consulted 2836 bytes 0.55001 sec.
T=signai _5650% 9 lacts.
T=device{ _5650} 4 facts.
T=ext _in_ pin(__5650) b5 facts.
T=-ext _out__pin{_ 5650) 2 facts.
T=npin(_5650) 7 facts.
T=npin _dit(_5650) 2 facts.
T=dir _name[ _5650) 1 facts.
T=descript _class{ _5650) 1 facts.
T=desc( _5650) 1 Tacts.
T=delay[_ 5650, _5651,_5652) O facts.
T=delay(__5650, _ 5651, 5652, 5653} 1 facts.
T=delay(_5650, _ 5651, 5652, 5653, _5654) 2 facts.
T=delay( ~5650, ~ 5651, 5652, 5653, 5654, 5655, 5656, _5657) 0 facts.
T=use( _5650, 5651, 5652, 50653, 5654, 5655, 5656) 2 facts.
T=ccc__name(_ 5650} 11 facts.
T=connect(_5650, 5651, 5652, _5653) 34 facts.
T=has(_ 5650, _5651) 18Tacts.
T==end _of _file 0 facts.
100 facts total.
dbid(jkff,tdl, 2.1, 4/11/84:15:47)
Phase 2 14.02 sec,
Output Keep 5.18 sec.

Total time is 44.23 sec.
o3
?7- halt.

| Prolog execution halted |

Figure 5.27. Prototype System Log for
Reverse Translation (DR1 to TDL).




dbid{jk,Ldl,'2.1",'4/11/84:15:47").

contcnt(|sugnal(qb) signal{q), signal(nand _ __f),

signal(nand _ __e), signal{i), signal(nand _ __d),
signal(nand _ _c), signal{nand b), sngnal(ﬁand_ _a),
device(not),” ~ device(nand), device[dig nand),

device(dig _ _3__ _nand), ext__in pln'(ElockT ext_in_ pin(j),
ext_in_pin{k),e: ext, in_pin(ps), “ext _in__pin{pc),

ext. out __pin(og), “ext__out_pin{ogb),” “pin(ogb),

pin(oq), pin pc pin

pm k), pln] , pm{cloc k),

pin_ du(m pin _dir(out), dir_name(rph),

descript _ class(gat.e

dese{THE MODULE IS A MASTER / SLAVE JK FLIP-FLOP WITH PRESET
AND PRECLEAR LINES. ;

delay(dev9,1,1,/), delay(not, 3 2 1,/), delay(nandel,3,2,4,/),

use(dig _ "___ nand,=,nand,2,1,none,nandel),

use(dig___3_ _ nand,=,nand,3,1,none,nandel),

oce _name{devl), occ__name dev"; occ__name(dev3),
oce__name(devd), occ __name(dev5), occ__name{dev6),
occ__name{dev7), occ_name(g___ nand), occ__name{h __ nand)
oce name(dev8), occ name(dev9),

connect(devl, n:md __a,out, ,1), connect{devl,qb,in,2),
connect(dev2,nand _ __b,out,1), connect{dev2,q,in,2),

connect{dev3, nand "c,out l) connect(dev3,nand _ _ a,in,2),
connect{dev3,nand _ _ d,in, 3 connect{dev4,nand _ _d,out,1),
connect dev4,nand _b,in,2 , connect(devd4,nand” _ ¢,in 3)
connect(dev5,i,out T), connect(dev6,nand __ __.e,out.,l

connect(dev6, nand __¢,in,1), connect(dev6,i,in,2),

connect{dev7, nand __fout,1), connect{dev7,nand__ _ d,in,1),
connect(dev7,i,in,2), connect(g _ _nand,q,out, 1),

connect(g__ nand nand e,in,l}, connoct(g nand.qb,in,2),
connect(h _ nand,qb out, 1), connect(h nand nand __ fin,1),
connect(h_ _nand.q.in,2), connect(dev8,q,in l),
connect(devd,gb,in 1), connect(dev5,clock,in,1),
connect({dev?2,clock,in,3), connect(devl clock,in,3),

connect devl,j in l) connect{dev2k,in,1),

connect{dev3,ps,in,1}, connect{devd,pe,in,1},
connect(dev8,0q,0ut,1), connect{dev9,oqb,out,1),

has(pc,in), has(ps,in), has(k,in),

hast{j,in), has(clock,in}, has({ogb,out),

has oq,out) has(devldig__ _3___ nand), has(dev2dig__ _3_ _ nand),
has(dev3,nand), has dev4,nand), has(dev5,not), ) ’
has{dev6,dig na.nd) has(dev7,dig_ 2 nand),

has(g__ _nand nandr has(h _ _nand,nand),

has(dev8,not). has(dev9,not),

dummy])

Figure 5.28. Target TDL DBIF Produced by
the Reverse Translation.
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5.3 CALMA to CIF

The third and final example involves transporting a CALMA GDS II
Stream Format database into a CalTech Intermediate Format (CIF) data-
hase. Both of these database formats were described in section 4.2.1. The
CALMA. Stream Format is a widely recognized database format used to
transport VLSI layouts, consisting of polygons and other geometric shapes,
describing the various mask layers which are used to fabricate IC’s. CIF is
used for the same purpose as the CALMA Stream Format, but the entities
are different. Appendices C, D, F, and G provide examples of this data and
the corresponding DBIF's which were processed by the compilers and for-

matters described in Chapter 4.
5.3.1 Data Mapping

As in the previous two test cases, the rules for translation can be
defined, data models for the CALMA, CIF, and generic formats are neces-
sary along with mappings between the data schemas. Figure 4.2 showed
the BNF-like description of the CALMA GDS II Stream FFormat. A graphic
equivalent of the Stream Format syntax is provided in the data model di-
agram of Figure 5.29. In general, a CALLMA Stream Format (hereafter re-
ferred to as CALMA) file consists of one or more structures which are like
macros. Each structure contains one or more elements of the type: boun-
dary (polygon), path, node, box, text, structure reference, and array refer-
ence. Other CALMA data entities are modifiers which further define these

basic entities. Each entity describes some feature of the layout.
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One distinguishing feature of CALMA in comparison with some oth-
er IC layout data models is the array reference. This provides a way of
creating a regular lattice with a structure reference (i.e., macro call) at each
lattice node. To illustrate this, we consider the example of a CALMA struc-
ture shown in Figure 5.30. A 2 x 3 array reference using this structure
would create the lattice shown in Figure 5.31. In CALMA, an array refer-
ence is defined by specifying the number of rows and columns and by indi-
cating the reference point and X-axis and Y-axis extrema, which contain

the lattice node origins, as shown in the illustration.

Another feature of CALLMA which is not universally available in this
type of CAD system is the ability to apply magnification factors to struc-
tures either for a structure reference (sref) or an array reference (aref).
Since a CALMA data base is hierarchical, "sref"s (or "arel"s) may be nested
several levels deep. When a magnification factor is applied for an "sref” or
“aref”, the factor is, by default, relative to the next higher level in the
hierarchy. It is also possible to specify that a magnification factor be abso-
lute. In this case, any previous scaling factors in effect from higher levels

in the hierarchy are disregarded.

The CIF data model has a different set of geometric entities (see
Figure 5.32). As with the CALMA, each CIF data entity describes some
facet of the VLSI layout. As with the CALMA data model, CIF has po-
lygons. boxes, wires (paths), and a symbol {macro) definition capability.
However, CIF does not have an equivalent to the CALMA array reference.
On the other hand, one feature of the CIF model not present in the CAL-

MA model is the "flash” entity. This feature is common with data formats
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which drive photo-plotters, having a circular aperature capability. The

CIF flash is merely a circle of given diameter.

Also absent in CIF is the ability to scale a symbol (macro) when it is
referenced. The CIF scale feature is only used during symbol definition to
avoid having to write decimal points and/or zeros in the coordinates given
in the symbol definition. For example, if the coordinates 43000, 52000,
160000, 200000 were needed in the body of a symbol definition, then by ap-
plying a scaling factor of 1/1000, they could be written as 43, 52, 160, and
200. This makes for more compact data bases and saves typing in the data
if done manually. However, if the same basic structure is to be repeated in
different sizes, then in CIF, two separate structures must be defined with
differently scaled coordinates. This is in contrast with CALMA which al-
lows two instances of the same macro to have different sizes by applying

scaling factors.

In Chapter 3, a set of generic predicales {or physical data was
presented (see Figure 3.18). This set is a combination of predicates from
several different geometric data models. Alternative generic sets could be
defined, but this set is sufficient to demonstrate the knowledge-based
methodology for CAE/CAD/CAM data transport. In general, the generic
set should be as all-inclusive as possible. However, there are some flaws in
the data models of existing CAD systems which should be avoided to facili-

tate data transfer between systems.

One anomaly in both the CALMA and CIF data models is the pres-
ence of both “"polygons” and "boxes”. The problem with having both of

these entities is that the box is a special case of the polygon. A manifesta-
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tion of the problem would be a rectangle represented as a polygon instead
of a box. There is no way to determine how to represent the data if it is
transported to another system which also has both polygons and boxes. By
looking at the vertices, the rectangle would meet the criteria for a box.
This translation would be flawed since the original data representation
wouldn’t be preserved. The problem is compounded as a source data- l?:}se
is translated into a generic data base and then into a target data base. At
cach step in the transport of the data, there is the possibility of
misrepresenting the data contents. The reverse translation is more discon-
cerning, since it is possible that the same data being represented in terms
of alternative predicates. Consequently, two equivalent data bases wouldn't
compare equal. To avoid this problem, the set of generic predicates
defined in Chapter 3 includes only the polygon entitiy, and not the box en-
tity. In this way two sets of generic data can be compared since there is

only one way of representing each data entity.

The next step in preparing for the transport of a CALMA database
to a CIF database is defining the mapping from CALMA to the generic for-
mat. Figure 5.33 shows this mapping. Many CALMA predicates map
directly onto generic predicates. Some CALMA predicates can be mapped
onto generic predicates, but a mapping other that one-to-one is required.
These predicates map onto generic predicates indicated in "()". Still

another set of CALMA predicates have no generic counterpart.

Those predicates having a mapping which is not one-to-one, require
a special approach. The CALMA predicates "aref", "columns"”, and "rows"

map onto the generic "macro__call®, since the generic data model has no

171



CALMA Stream

boundary(D)
box(B)
path(P)
layer(S,L)
xy(S,X,Y,l%
width(S, W
text(T)
structure(S)
string{T,S)
vert_pres(T,V%
horz __pres{T H
font _no(T,N)
db__unit_meters(S)
sref(S,Name)
magnitude(S,M)
abs__mag S;
abs__angl(S
datatype%S,D
pathtype(S,P
node
nodetype
boxtype
texttype
reflection
angie
aref
column
row
fonts
generations
propval
db _ user __units

O O O O T R T T 2 M O A e s A A A A Y A A Ay

Generic

polygon _ B}
polygon (B
wire__ (P
layer_ (S,L)

vertex__{5,X,Y,])
width _(S,W)
text_ (T)
macro__del(S)
textval _(T,S)
v__just(T,V
h__just{T,H
tfont _ (T,N
scale  (S)

macro _call{S,Name)
magnif _(S,M)

relative __magnif(S)
relative _orient(S)

N ) 03 ) - "dI

{orient}
orient

macro__call
macro_call

macro__call
?

?
?
?

Figure 5.33. Mapping from CALMA to Generic Predicates.

array reference. To do the mapping, it is necesssary that CALMA "aref"s

be converted to a set of "sref"s. While the generic data is correct initially,
the potential for error exists since each individual "sref” can be changed in-
depently, but not in the original "aref”. To perform the translation, each

node in the "aref” lattice is determined and an "sref” placed at that origin.

When specifying an "aref", it is possible to apply X-axis reflection

and/or an angle of rotation. This presents a further complication in



translating “aref”s, since the origin for each individual "sref” must be com-
puted, according to the angular transformation and the row/column posi-
tion (see Figure 5.34). Also, the angle of rotation and reflection must be ap-
plied to the coordinates of each "sref". The relative orientation of each

"sref" with respect to the array lattice remains fixed.

The CALMA predicates "reflection” and "angle” map onto the single
generic predicate, “orient . The reflection predicate mirrors the data
about the "X" axis. "Angle" rotates the data about the "Z" axis {within the
X-Y plane) with a positive angle in the counterclockwise direction. The
single generic predicate, orient , has 3 angles of rotation: about the X-
axix, Y-axis, and Z-axis. Therefore, the CALMA predicates, "reflection”

and "angle”, map onto the single generic predicate "orient

Those CALMA data items which simply do not map onto generic
predicates are stored as "kept facts”. These are available for processing

during a return translation.

Having defined a mapping from CALMA to the generic form, the
second half of the translation involves mapping generic predicates onto
CIF. Figure 5.35 shows this mapping. As with the CALMA-Generic map-
ping, there are also mismatches between the generic and CIFF formats.
Two CII' entitites have no generic counterpart: "flash” and "box". A flash
can be approximated as an octogon {a special case of polygon, see Figure
5.36). A CIF box is just a rectangular polygon. In the reverse translation
from generic data into CIF, all polygons are inspected for the special cases
octogon and rectangle. In these cases, a polygon is translated as either a

flash or a box.
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Figure 5.34. Angular Rotation and Reflection
Applied to aCALMA Array Reference.
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CIiF Generic

polygon{P} polygon__ (P
box(B,L,W,CX,CY) polygon_ (B
flash(F) polygen (F
wire(W,Wid) wire_ (W)
wireW,Wid) width W, Wid)
del‘_sym(Ng macro__def(N)
scale(N,A,B scale(S)
layer(S,L) layer (S,L)
transl{P,X,Y,I) vertex__{P,X,Y,l
vertex(P, X, Y 1) - vertex__ (P, X,Y,]

macro__call(S,Name)
magnif _(S,M)
relative __magnif(S)
relative _ orient(S)

call_sym(S,Name)
?

?
?

LI 1 A S T O O O O O O

mirrorx{P,I‘ orient(X,AX,AY,AZ
mirrory(P,] orient{X,AX,AY,AZ
rotate(P,A,BI) orient(X,AX,AY ,AZ
has(N,P) has__(N,P)

? text  (T).

? textval _(T,Str).

? h_just(T,N).

? v__just{T,N).

? tfont_ (T F).

Figure 5.35. Mapping from Generic to CIF Predicates.

There are also two sets of generic predicates without CIF counter-
parts. The first stores data about text strings. CIF has no text facility.
The second set of generic predicates without CIF counterparts are "magni-
tude" and "abs__mag". In the case of text predicates, the generic data is
stored as "kept facts". For generic magnitudes which are applied at the
time of a macro call, the lpck of CIF counterpart requries that separate
macros be defined for each reference at a different magnitude. Note that
the CIF scaling feature is not equivalent to the generic magnitude feature.
CIF scaling is merely a way of reducing the number of digits typed for
defining macro coordinates. Scaling is not applied when the macro is

“called”. Consequently, all references to a macro are at the same size.
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Figure 5.36. Octagonal Approximation of a CIF Flesh.
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To test out the solution to the CALMA-CIF data transport problem,
the sample data introduced in Chapter 4 was used. Figure 4.3 shows a plot
of this CALMA GDS II data. The data was modified slightly to make the
test case more difficult and to exhibit more of the features of CALMA. For
example, an array reference was added to the original database. Appendix I
shows the actual CALMA data which was used as the source DBIF for this
test case. This data consists of two CALMA structure definitions: "dev”
and "t18", containing several boundaries and some paths. Inside of the
structure "dev" is a structure reference to "t18" and also two array refer-
ences to "t18", one at half-size reduction and 90° rotation. Figure 5.37
shows the resulting hierarchy which represents this CALMA database.
When translated into CIF, the database must represent the array refer-
ences as individual structure references with the appropriate orientation
and translation. Figure 5.38 shows the hierarchy as it should be represent-

ed in CIF.
5.3.2 Forward Rules

To accomplish the translation from CALMA to CIF, the first step to
to define rules for transforming the CALMA source data into generic for-
mat. Appendix J contains the Prolog rules for tranforming CALMA into
generic form. In order to minimize typing, several of the CALMA entities
are abbreviated (e.g., "bdry" for boundary, “stret” for structure). The first
16 rules are trivial. Rules 1-9 and 13-16 one-to-one mappings as shown in
Figure 5.33 (with the exception of abbreviations used). Rule 10, dealing
with vertices, is a one-to-one mapping except for the case where the entity

possessing the vertex is an "aref". In this case, an x-y coordinate is not
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Figure 5.37. Hierarchicsl Representation of CALMA Source Data.
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translated. These coordinates are special cases handled by other rules.
Rules 11 and 12 merely map CALMA text font numbers onto generic text

font names.

Rules 17 and 18 transform CALMA reflection and angle entities onto

the single generic orientation entity as described previously in section 5.3.1.

Rules 19-25 deal with "sref"s and “aref”s. Rule 19 maps all CALMA
"sref"s onto generic macro__calls. Rule 20 begins the translation of "aref"s
by determining the number of rows and columns in the array lattice.
"Aref(N,Name)" obtains from the input CALMA DBIF the identifier of an
array referece {N) and the structure name (Name) which is being placed at
cach lattice node. Next, "row__gen" (rules 22 and 23) and "rc__gen" (rules
24 and 25) are invoked to assert a series of facts ("current re(ArrayID,

Row, Column"), one for each row-column node in the lattice,

Rule 21 begins the generation of macro_ call's for each lattice node.
One at a time, each row-column node is retrieved from the Prolog data-
base. The structure referenced by the "aref” is determined next by map-
ping "n" to "Name" using "aref(N,Name)". The next several Prolog clauses
through "name(M,NM)" create a new "sref” name for the current "aref"
node. The "sref” name is the concatentation of the original "aref" identifier
with the row and column number. For example, the first node of
“aref(abec,t18)" would be identified as "abe 1 1", followed by

abe 1 2" and so on. The remainder of rule 21 generates a new set

of x-y coordinates for the origins of the new "sref"s and transfers any "has"
or "magnitude” attributes from the original "aref" to each new "sref". This

is accomplished by invoking rules 44-56, defining "xy asst”, "has _asst",
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and "mag__ asst”.

To summarize, for each node in the array lattice, a new "sref" is
created. The "xy asst” determines the origin of the structure reference.
This process was discussed in the previous section (5.3.1) and is shown pie-
torally in Figure 5.34. Reflection and/or angular rotation applied to the
“aref” is used in calculating the new "sref" origin. Rules 45-49 implement

this, The same equations were used to produce Figure 5.34.

Any structure which contains (i.e., "has") the original "aref” must
now be shown to contain each newly created "sref”. This is accomplished
by rules 50 and 51. Similarly, any magnitude which was applied to the

"aref”, must be applied to each new "sref”. Rules 52 and 53 perform this.

Rule 26 translates all CALMA "has" facts onto generic "has " facts,
except those for CALMA "aref"s and nodes, which are not directly translat-

ed into generic facts.

Rules 27-43 keep all CALMA data which cannot be represented in
terms of generic facts. This data will later be used for reverse translation
to fill in the gaps in a generic database and to provide a complete CALMA

database.

Finally, rules 54 and 55 are used to map CALMA absolute angle and
magnitude indicators onto generic relative indicators. Rules 56 and 57 are
used to define a superset (union) called "st ref", consisting of all "sref"s

and "aref"s.
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These rules constitute the means by which CALMA data is
transformed into a set of generic facts. The other set of rules necessary to
complete the transport of data from CALMA to CIF is the set which
transforms generic facts into CIF. These are also contained in Appendix J.
This set of rules is ordered alphabetically by clause. The first rule in this
set defines "asst _uniq"” which stands for "assert unique”. This is a miscel-
laneous utility which guarantees that a single fact is only contained once

in the Prolog database.

Rule 1 defines a CIF "box" which in turn invokes "box _in" (rule 3)
which in turn invokes "box _chk” (rule 2). In order to illustrate the use of
these rules, consider the CALMA design hierarchy of Figure 5.37. Item
"i 20" will translate into a CIF box. As the diagram shows, there are 3
distinct (indirect) references toi_20 by i_7,i_ 8, and i _14. The refer-
ences by i 7 and i__8 are at the original scaling. However, the reference
by i__14 has a reduction factor of one-half. So, 2 new i__20 will need to be
generated with all coordinates scaled appropriately since CIF doesn't have

a scaling feature. The same scaling will apply to all constituents of "t 18",

but for purposes of illustrating the rules, we concentrate on i __20.

Starting with box chk (rule 2), generic polygons are inspected to
verify whether the geometric constraints of a box (rectangle) are met.
Specifically, there must be 5 vertices with the first and last being equal. In
addition, the vertices must form an orthogonal polygon and this is
checked for as well. Finally, the vertices of the polygon are converted to
an alternate CIF box notation using a center coordinate (CX,CY), a length,

a width, and an orientation within the X-Y plane. This orientation is



defined as a CIF direction vector (formed by the line intersecting points
(0,0) and (DX,DY)) rather than by an angle. Box__chk(B ,L W ,CX ,CY
,DX ,DY) will return all boxes with their identifiers and defining parame-

ters.

In the example, i 20 meets the requirements for a box, so it is one
of those returned by "box__chk". Box _in (rule 3) retrieves each box from
box _chk and then removes its vertices from the Prolog database. Since
ali the information represented by the vertices is contained in the CIF box
parameters, there is no need to translate the vertices themselves. The last
clause (rule 3) "retr(vertex (B, , , ))" deletes all vertices of Box "B"
from the Prolog database. For i_ 20, the vertices are converted to center,
length, width, anél orientation.  Once "box _in" retrieves a box and its

parameters, processing returns back to "box" (rule 1).

The remainder of rule 1 handles the case when the box is called by a
higher level macro and a magnification factor is applied.
"Mac _link(N,Ref)" finds all macro definitions which refer to the current
box "N". Then, "box__scale” (rules 4-6) is invoked to generate a scaled ver-
sion of the box being processed. For i_ 20, the processing continues ac-
cording to the hierarchy of Figure 5.37. As indicated earlier, since 1 _7
and 1_ 8 reference i 20 (via t__18) without any scaling factor, no new
scaled instance of i__20 is required. However, since i__ 14 references i 20
(via t__18) and applies a scale factor, a complete duplicate of t 18 must
be generated (including i __20). This is reftected in Figure 5.38, which has
both i__20 (as part of symbol #2) and also box 1 (as part of symbol #1).

Box 1 is a scaled down version of i__20. Rules 4-6 (box _scale) along with
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rules 26-27 (get _mag), rules 23-25 (g_ m), rules 561 (new __call), rules 62-

64 (new _inst), and 53-58 (mhas, mhas2) accomplish this.

The rules for "get mag" and "g_m" determine which magnitude
(scaling) to apply considering whether it is absolute or relative, multiplying
all nested magnitude factors. The rules "new__call" and "new _inst" gen-
erate new scaled instances aﬂd alter the original reference (call) to point to
the newly created scaled instance. The rules "mhas” and "mhas2" establish
all of the appropriate "has" links in the new macro definition (the scaled
"t _18) and its constituent elements (scaled versions of i 20, i 23, i 24,

i 25, and i__26).

Continuing on to describe the remainder of the rules (Appendix J)
which transform generic data to CIF data, the next rule not yet described
is rule 7 (call _sym). For every generic "macro__call", including those gen-
erated due to scaling, a CIF "call _sym" is produced. Since symbols in CIF
are identiﬁed' by integers rather than by name as in the generic form, a
mapping is produced when a generic macro definition is encountered. This
mapping is stored in the Prolog data base and is then included as part of

the kept data by rule 45.

Since CIF symbol calls can have rotations applied as in CALMA, the
generic orientation values are evaluated (rules 8-16) in order to produce the
necessary CIF transformations: mirror about the X or Y axis and/or rotate
in the X-Y plane (refer to Figure 4.8 for the specific syntax). Finally the
origin of the generic macro call is used as the translation coordinate for the

CIF symbol call.
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Rule 17 (def _sym) is used to translate a generic macro definition
into a CIF symbol definition. This rule merely maps generic macro names
onto unique CIF symbol numbers and stores the mapping as a fact into the

Prolog data base as indicated previously.

Rules 19-22 create CII' flashes from generic polygons in the manner
that CIF boxes were created. In this case, "fish__chk" (rule 22) determines
whether the generic polygon is an octogon. If so, then a CIF flash is creat-
ed. Also, since a flash may be a part of a generic macro which is referenced
with a scaling factor, we also include rules 20-21 (fl _scale) which is analo-

gous to box _scale discussed in detail previously.

Rule 28 (has) is straight-forward. Any generic "has_ " data is
mapped onto a CIF "has" clause, except for text. Since CIF doesn’t pro-
vide for text, it is stored with the kept facts (rule 33). Also, in translating
from generic "has " data to CIF "has" data, all generic macro names must

be converted to CIF symbol numbers using previously generated "map "

facts.

Rules 29-45 store untranslatable generic facts into kept facts. Also
any artificially created CIF symbol calls or CIF symbol definitions (due to
lack of a magnification factor) are stored along with the original generic
macro name. For example, in Figure 5.38, CIF symbols #1 and #2 are
equivalent to separate calls to the same generic macro t 18 of Figure 5.37.
These relationships are stored as kept facts. The majority of the "keep"”
rules store text values and their related characteristics (e.g., font, magni-
tude, orientation, etc.). This will be more evident as the results of transla-

tion are presented further on in section 5.3.4.
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Rules 46-49 (layer) map generic layer numbers onto CIF layer
names. Layers indicate which physical medium will be used to fabricate
the layout feature. For mxample, paths can be formed in metal or polysili-
con using the NMOS fabrication process. These layer rules merely guaran-
tce a consistent mapping. Note that rule 49 is a default rule used if a gen-
eric layer number is used which has not been assigned to a CIF layer type
(nd, np, or nm for NMOS diffusion, polysilicon, and metal, respectively).
To create 2 unique CIF layer name out of an unrecognized generic layer
number, the character "1" is prepended to the generic layer number. This
'may cause an error when the native CII' file is produced by a formatter

from the CIF DBIF. At that time, the owner of the data would need to

determine the correct fabrication layer to be used.

Rules 50-51 (layer _chk) are used to add layer information for new
scaled versions of polygons, boxes, wires, etc. when they are created from a

single generic item.

Rules 52-64 have been discussed previously in conjunction with gen-
erating scaled versions of various generic data items due to lack of a CIF

scaling capability.

Rules 65-66 are used to transfer orientation information when a new

symbol call is created as a result of scaling by rule 60.

Rules 67-71 are used to create CIF polygons from those generic po-

lygons which do not qualify as boxes or flashes.

186



Rules 72-77 translate generic vertices into CIF vertices with the gen-

eric scaling factors applied.

Rules 78-81 create CIF wires from generic wires by applying any
scaling factors in effect and creating new instances where necessary. This is

analogous to the scaling scenario for boxes.

This completes the description of the two sets of rules required for
forward translation from CALMA to CIS. The first set translated from
CALMA to generic data; the second from generic to CIF data. The results
of applying these rules to actual data are presented below in section 5.3.4,
after first deseribing the reverse translation rules for CIF to CALMA tran-

sport.
5.3.3 Reverse Rules

In order to produce CALMA data from CIF data, two sets of rules
are used as in the forward translation case. The first set translates CIF to
generic data; the sccond translates from generic to CALMA. These sets of

rules are included in Appendix K.

The rules translating CIF into generic data are less numerous than
were those for the generic to CIF translation. This is principally because
CIF is a simpler data model than the generic model. Kept data is used to
avoid propagating artificial CIF symbols, created for lack of CIF scaling,
back into the generic data. Instead, these artificial CIF symbols are delet-
ed by the rules for “macro__def". Similarly calls to artificial CIF symbols

are removed by the rules for "macro__call”.
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CIF polygons, boxes, and flash are mapped back onto generic po-

lygons by the rules for "polygon " in Appendix K. Included in these rules
is the programming necessary to convert from CIF box center, length,
width, and direction vectors into 5 polygon vertices (the first equal to the

last). Also, CIF flashes are converted into generic polygons {octogons) and

the programming to do this is also embedded within the "polygon " rules.

Finally, rules are included to compute a three-dimensional transfor-
mation matrix from CII' translation, X-axis and Y-axis mirroring, and X-Y
plan rotation. This transformation matrix is used to complete all generic

vertices.,

The remainder of the CIFF input rules are the reverse of the CIF out-
put rules. Also, generic data is re-created from any kept data previously

generated.

The second set of rules takes generic data and produces CALMA
output. These rules are also presented in Appendix K and are for the most
part one-to-one mappings. One exception is the set of rules which re-
created CALMA "aref"s from individual generic "macro_ call"s. This is ac-
complished by looking for "macro__call"s which have a row-column desig-
nator appended to a name which was stored in the kept data as an "aref".
These rules were applied to the output data from the forward translation,

and the results are presented in section 5.3.5.
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5.3.4 Forward Translation Results

With the CALMA to CIF rules defined, the prototype translation
cengine was used to generate CIF DBIF from CALMA DBIF. The original
data for this test case was described earlier in section 5.3.1. The actual
source DBIF is contained in Appendix I and the hierarchical nature of the

data was illustrated in Figure 5.37.

The system log of the translate engine is shown in Figure 5.39. The
first phase of the translation involves translating CALMA data into generic

data. This phase is indicated in the log by the lines beginning "T= ..." in

Figure 5.39 which are between the lines "Start Up ..." and "Generic ...".
Note that 201 generic facts were generated. It is important that this
. number be compared with the number of generic facts generated during

the reverse translation.

The 201 generic facts generated are shown in Appendix M. There

are facts for every generic predicate except for “tfont " which means that
the input CALMA data specified no text font for any input text string
(which is true). The generic polygons, wires, and layers were just simple
translations of their CALMA counterparts. However, the source CALMA
data contained 2 "aref"s (i__7 and i__14) and 1 "sref" (i__8) as shown in
Figure 5.37. Since the generic data model doesn't contain an "aref”
equivalent, the "aref"s were translated into individual generic
"macro__call"s. This is reflected in Figure 5.39. Since i 14 is 2 2x2 "aref",
the "macro_ call"s for i_14_ 1 1 throughi_ 14 2 2 are con-
tained in the set of generic data. Similarly, there are 6 individual

"macro__call"s in the set of generic data replacing the single 2x3 "aref"
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CProlog version 1.4d.edai
| Restoring file trantl.env |

s
)y?- translate(‘gds.dat’,'3cif.out’,'3cifK.out’,'test.db’,¢if.’1.0°,"7 /26 /84:21:55").
gds.dat consulted 6324 bytes 1.0167 sec.

>>Translate. V10 <<

dhid{test.db,gds,1.4,7/24/84:14:50)

gdsin.rul consulted 7188 bytes 1.3667 sec.

Start Up 7.5 sec.
T==polygon _(_1638) 14 facts.
T=wire__{_1638) 3 facts.
T=macro_def{_ 1638} 2 facts.
T=macro__call(__ 1638, _1639) 11 facts.
T=scale_{_1638) 1 facts.
T=layer_( _1638,__1639) 18 facts.
T=vertex _[_ 1638 _ 1630, _ 1640, _1541) 105 facts.
T=width_(_1638, _1639) 3 facts,
T==orient _{_ 1638, _ 1630, _ 1640, _1641) 2 facts.
T=has_{ 1638, 1630) 20 facts.
T=magnil_(_1638, _1639) 6 facts.
T=relative__orient( _1638) 2 facts.

=relative_magnif(_1638) 1 facts.

T==text _{_1638) 1 facts.
T=textval _(_1638, _1630) 1 facts.
T=h_just{_1638,__1638) 1 facts.
T=v_just(_ 1638, _1630) 1 facts.
T=tfont_{_1638, _1630) O facts.
T=end _of _file 0 facts.
201 facts total.

Generic  6.15 sec.

Keep  0.92 sec.

Unload  2.22 sec.

cifout.rul consulted 12572 bytes 2 8333 sec.
T=polygon( _4942) 3 lacts.
Te=hox({ 4012, 4043, 4044, 4045, 4046) 16 facts.
T=flash{_ 4042, _4943,__ 4944, _4045) 0 facts.
T=wire( _4942, _4043) 3 facts.
T=del _sym(_4842) 3 facts.
T=has{_4942. _ 4043} 33 facts.
T=scale{ _494%, _4043, _4944) 3 facts.

==call _sym(_ 4942, _4043) 11 facts.
T=transl(_ 4942, 4043, 4844, 4945) 11 facts.
T=mirrorx( _ 4942, _4943) 0 facts
T=mirrory( _ 4942, _4943) 0 facts.

—rotate( 4042, 4043, 4044, _4945) 16 facts,
T==vertex( _ 4042, 4043, _ 4044, 4945) 44 facts.
T=Ilayer(_4942, _4943) 22 facts.
T=end _of _file "0 facts.

165 facis total.
Phase 2 18.63 sec.
Qutput Keep 113 sec

Total time is 40.05 sec.
es
r?- halt.

| Prolog execution halted |

Figure 5.39. System Log for the Forward Translation
(CALMA to CIF).
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i_7. Vertices were created for each of these newly generated
"macro__call"s from the x-y coordinates of the “aref" as previously
described in section 5.3.1. The CALMA "angle" fact for i__14 in the source
data (Appendix I) was used to determine the individual vertices for each
"macro__call” generated and the rules for performing this are shown in Ap-
pendix J (rules 44-49). Having used this angle fact for i__14, it is not in-
cluded in the generic set, since no rotation should apply to the individual

"macro__call"s. However, the i 14 angle is stored as part of the kept facts

generated during this first part of the forward translation.

The kept facts generated in translating CALMA into generic data
are shown in Figure 5.40. This is the CALMA data which cannot be

represented in terms of generic predicates.

The next part of the forward translation converts generic data into
CIF data. As shown in the system log (Figure 5.39), this part of transla-
tion generated 165 facts. The reduction in the number of facts is a clue
that some generic data couldn’t be represented in CIF. This is not strictly
true since the output DBIF predicates could contain more information
(parameters) than the generic predicates. The actual CIF produced is
presented in Appendix N. As Figure 5.35 shows, all CIF' data has a generic
counterpart (although not always one-to-one). The converse is not true;
there are generic predicates which do not map onto CIF counterparts. One
example is the generic predicate "magnif ". As indicated previously in
section 5.3.1, CIF doesn't allow scaling to be applied to a macro when it is
referenced. Consequently, there are complex CIF output rules (get _ mag,

g_m,new _call, and new inst) which create scaled instances of generic
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fromdb(’test.db’,gds,'1.4’).
todb('test.db’,cif,'1.0'}.
content((keep(angle(i _14,90)),
keep(xy(i__14,46000,8000,3)),
keep{xy(i__14,563250,3000,2 ;,
keep(xy(i__14,46000,3000,1)},
keep(xy(i__7,35000,3000,3)),
keep(xyl(i 7,46000,0,2;},

keep(xy(i__7,35000,0,1
keep columns{i_14,2)),
keep(columns(i_7,3)),
keep(rows(i__14,2)),
keep(rows(i__7,2)),
keep(aref(i__14,t18)),
keep(aref(i__7,t18)),
keep(db__user__unit{1e-05)),
keep(generations(3)),
keep(fonts 'gdsii:font.tx',2;{,
keep(fonts('gdsii:font.tx',1)),
keep(dtatypl(i__26,0)),
keep{dtatyp(i__25,0)),
keep(dtatyp(i__24,0)),
keep(dtatyp(i_23,0)),
keep(dtatyp i_20,0$ ,
keep(dtatyp(i__18,0)),
keep(dtatypli__17,0)),

keep(dtatypli__ 16,0
keep{dtatyp(i__15,0
keep(dtatyp i_l3,0$
keep{dtatyp(i _ 12,0
keep(dtatyp(i __11,0
keep(dtatyp(i__10,0
keep(dtatypli__9,0)),
keep{dtatypli__6,0}),
keep(dtatyp(i__4,0)),

keep(dtatyp(i__3,0

Figure 5.40. Kept Facts Generated in Translating
CALMA into Generte Data.

macro definitions. Relerring to Figures 5.37 and 5.38, it can be seen how

the original CALMA array reference to "t 18" at magnitude 0.5 gets con-

verted into a call to CIF symbol #1 which is a completely replicated ver-

sion of CIF symbol #2, reduced by half. This data is shown in the output

CIF DBIF of Appendix N. One additional set of generic data not translat-

ed into CIF are the predicates which define text. These are not seen in the

CIF output DBIF.



Appendix R shows the entire set of kept facts generated in this for-
ward translation from CALMA to CIF. In addition to those kept facts
shown previously in Figure 5.40, new generic data which couldn't be
translated into CIF has been added. As indicated before, all text data has
been “kept". Also, those predicates such as “magnif ", “ncall”,
"item _inst", “macro__inst”, and “macro__call" which are the result of not
having a CIF magnification feature have been "kept” as well. Note that the
"map " facts have also been kept to correlate CIF symbol numbers with

generic macro definition names.

This completes the forward translation of the sample CALMA data
into CIF. To add further validity to the experiment, the resulting CIF
data was transported back into CALMA.

5.3.56 Reverse Translation Results

The rules neceded to perform the reverse translaticn (CIF to CAL-
MA) have been described in section 5.3.3. Applying these rules along with
the CIF DBIF, created by the forward translation, the prototype transla-
tion engine yields the system output log shown in Appendix Q. The results
of the first half of the translation were 200 generic facts. Comparing these
with the 201 generic facts from the forward translation (Appendix M},
shows that one "orient " fact was lost. Inspection of the "orient " facts
shows that the fact lost was "orient_ (i_8,0,0,0)". This is due to the
"vtxfin” rule (marked /* V */) in the CIF input rules (Appendix K). This
rule precludes a "zero” rotation (i.e., orient_(X,0,0,0)) from being written
out into the generic set of data, since zero rotation has no effect on the end

result. Consequently, the two sets of generic data are equivalent.
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Note also that the generic data produced by the reverse translation
(Appendix ©O) contains the magnification factors applied to the
"macro__call”s for i__14. In fact, both i__7 and i_ 14 refer to t__18 in the
generic data with i__ 14 having 2 magnification factor. However, in the CIF
data, "mecall 1" through "mecall _4" (the CIF equivalent to i__14) call sym-
bol #1 (the half-scale equivalent to t_ 18 in CIF). The kept data
preserved the information necessary to know that the CIF data has a

scaled-down version of t__18.

The second part of this reverse translation takes the generic data
and produces the final CALMA output DBIF. The system log (Appendix
Q) shows that 199 CALMA facts were generated. These are shown in Ap-
pendix P. The original CALMA DBIF contained 200 facts. The discrepan-

cy can be explained.

First, the system log shows that 3 CALMA "mag" facts were gen-
erated from the generic data. The original CALMA source had only two
“mag” facts. Inspection of the output CALMA data shows that two of the
"mag"” facts are the same. This anomaly was introduced during the for-
ward translation when the single "aref” i 14 was converted to four generic
“macro__call"s. The original magnification factor of 0.5 was attributed to
each of the four "macro_ call"s, and it was also stored along with i 14 as
well (see Appendix M). This is a minor error in the original input rules for
CALMA data. Specifically, rule 14 (CALMA to CIF rules A[)f)endix J) is
wrong. It says that all CALMA "mag(S,M)" facts should be translated into
generic "magnif _(S,M)" facts. This rule should be modified to do so only

if the magnification doesn’t apply to an "aref”. The error was left in the

194



rules to show the impact of such an oversight in the resulting output.
Thus far, we have shown that the 199 output CALMA facts are actually

only 198 facts (one was an extra "mag" fact).

The original set of CALMA data had 200 facts, therefore, there are
two facts unaccounted for. Again, by inspection, there are two angle facts
which were in the original CALMA data which have been lost', during the
translation. Two of the original angle facts (see Appendix I, angle(i__8,0.0)
and angle{i__14,90.0})} are missing from the output; only angle(i _32,0.0)
remains. The i__32 is the identifier for the only CALMA text item. Since
this was never translated into CIF, it was not removed from CIF by the in-
put rule /* V */ (Appendix K) which removes “zero" orientations. Instead,
the zero orientation for i__32 crept back into the generic data since it had
been a part of the kept data. This explains why the zero orientation for
i_ 8 is missing: it was removed by the CIF input rule /* V */. Since it is a
zero orientation, it makes little difference. However, the 90° rotation on
1__14 in the source CALMA data would seem to be an error. However, a
closer look at the CALMA output vertices for i__ 14 show three coordinates
(see Appendix P): xy(i__14,46000,3000,1), xy(i_ 14,41000,3000,2), and
xy(i_ 14,46000,10250,3), where the second and third arguments to the xy
predicate are the X and Y coordinates, respectively. These three vertices
form a CALMA "aref”, shown in Figure 5.41. The original source CALMA
vertices for i_14 were (see Appendix I): xy(i_ 14,46000,3000,1),
xy(i__14,53250,3000,2), and xy(i__14,46000,8000,3). Figure 5.41 shows that
the output vertices are merely the result of a 90° rotation of the source
CALMA vertices. Therefore, it is alright that angle(i_ 14,90.0) is missing

from the output CALMA data, since the rotation was applied to the ver-
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tices instead. Thus, the source and output CALMA data are equivalent.

This third example using the knowledge-based prototype system
shows the feasibility of the methodology for the "physical” class of data
discussed in Chapter 2. The methodology has proven feasible for two ma-
jor classes of CAE/CAD/CAM data (logical and physical) and for several
different source-target system combinations. It is clear from these exam-
ples that there are significant differences in the data models and data ele-
ment representations which are used by the various CAE/CAD/CAM sys-
tems. These differences complicate the data base transport problem and

sophisticated translation rules are required to accomplish the objective.
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CHAPTER 6
CONCLUSION

The objective of this dissertation was to develop a method for tran-
sporting data bases between distinct types of electronic CAE/CAD/CAM

systems. The need for this research is evident from

1) The numerous CAE/CAD/CAM systems in use today, both com-

mercial and privately-owned;

2)  The years spent by representatives of dozens of companies in
trying to agree upon common data interface specifications (notably, IGES

and EDIF); and

3) The lack of an industry-wide solution which has been accepted

and put into production use.

Indeed, work continues at present toward standards for data base tran-

sport.

Toward this stated objective, this dissertation has provided new in-
sight into the problem and has defined a methodology which has proven

feasible. Specifically, the accomplishments are:
1) The definition of categories of CAE/CAD/CAM data,

2)  An analysis of the difference in electronic CAE/CAD/CAM data
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representation, content, and organization,

3) A presentation of examples of the difficulties in translating

between data base types,
4)  The definition of a data transport system architecture.

5) The construction of a prototype translation engine using a

knowledge-based system approach,

6) The development of rules (knowledge-base) which contain the ex-
pertise on how to translate out of the master data schema and five native

CAE/CAD/CAM data base types, and

7)  The application of the prototype to three two-way transport test

cases.

The system architecture developed consists of data base compilers, a
data base intermediate format (DBIF'), a master data schema defined upon
generic predicates, a generic translation engine, a knowledge base of trans-
lation rules/expertise, and data base formatters. The system is adaptive
and not limited to one class of CAE/CAD/CAM data. In order to intro-
duce a new data base type into the system, new rules must be defined for
the new data base only. Since a master data schema is utilized, the rules
only nced specify how to translate data between the master schema and
the new data base. Consequently, rules are not needed for each source-

destination data base pair.
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One problem which has rendered previous data base transport ap-
proaches limited in their effectivity is the mismatch between the content of
two distinet data base types. Previous translators have discarded any
source data which couldn’t be translated in the destination data represen-
tation. This is problematic when the data must be transported back to the
originating system. The methodology defined herein addressed this problem
(referred to as the delta problem), and provides a capability which stores

this data for later use in reverse translation.

The system prototype was implemented using Prolog. This was 2
very natural application of the logic assertion style of Prolog. All of the
rules necessary to translate between data base types were expressed as Pro-
log statements. The DBIF selected used the Prolog syntax which made the
translation process straight-forward by utilizing the built-in Prolog infer-
ence engine to derive the destination data base. The test cases have shown
that the original objective is feasible, and that artificial intelligence

(knowledge-base/expert systems) is an integral part of the methodology.

In the course of developing the prototype and in performing the ex-
periments with the test cases, several conclusions were drawn which may

aid others in similar work.

1) Prolog is well-suited to this type of work, because rules can be
developed incrementally with knowledge of how data should be represented

in the various CAE/CAD/CAM systems.

2) C-Prolog (an interpreter) provides very helpful built-in debugging

facilities, including traces of execution and break-points on logical expres-
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sions encountered during execution.

3) The use of a set of generic predicates facilitates the transport of
data by minimizing the amount of new rules which must be added when
new data base formats are used. The_ proof of this was that no new rules

were necessary for DRI when translating into TDL instead of DR2.

4) The use of a neutral syntax such as the data base intermediate
form (DBIF) described in this methodology facilitates data schema transla-

tion and verification.

5) The arithmetic/mathematic built-in functions of C-Prolog are quite

adequate for most geometric transform needed.

One limitation to this work is the size of the data bases. The test
cases were small enough to fit within the memory constraints of the C-
Prolog interpreter. A full-scale Prolog compiler would no doubt provide

faster processing and perhaps larger memory capacity.

There are a number of areas for future work in this area. One ma-
jor concern is how to discern whether a data base has changed from the
time it leaves its source system until it is transported back. For example, a
CALMA data base could be translated into CIF, then modified, and then
translated back into CALMA. It would be useful to develop rules which
indicate how to detect the modification. This problem was investigated
briefly in the midst of experimenting with the translation test cases. A set
of change detection rules were written in Prolog, but additional effort wz';s'

set aside as a future topic of investigation.



Another area for further work is the refinement of the generic predi-
cate sets for the different classes of CAE/CAD/CAM data. Perhaps, a new
set of generic predicates can be developed from the new EDIF standard
once it is released. There is great promise that this standard will be very
comprehensive as regards electronic CAE/CAD/CAM data entities. The
LISP-like syntax of EDIF should be conducive to being expressed in Prolog.

Another concern is that there must be some criteria to determine
whether a set of translation rules is complete with respect to all of the data
elements of the native CAE/CAD/CAM data schema. Further work into
this area needs to define desirable characteristics of native
CAE/CAD/CAM data schema which will facilitate specifying translation

rules.

The scope of this research was limited to the field of electronic
CAE/CAD/CAM. The idea of rule-based data base translators may have
application to other fields which have similar interchange requirernents. As
investigators encounter similar data interchange problems, it is hoped that

this work will benefit them in there endeavors.

It is certain that this research provides further credibility as to the
viability of artificial intelligence as a problem solving tool. Also, the ease of
which CAE/CAD/CAM data is expressed in terms of logic constructs may
broaden the application of artificial intelligence techniques to other

CAE/CAD/CAM problem areas.



APPENDIX A
GLOSSARY

ASCII: American Standard Code for Information Interchange. This is a

ANSI:

seven bit character code used to represent alphanumeric data.
There are 128 unique characters which are represented with this
code. It is also represented in an eight bit format which leaves the
high-order bit either set or cleared by convention adopted by the

computer manufacturer.

American National Standards Institute. The agency responsible for

setting standards pertaining to computer software {e.g., program-

- ming languages)

CAD:

Computer-Aided Design. Refers to any automation support (i.e.,
tools) for any design activity. Originally, it pertained to all comput-
er systems which were used by engineers. More recently, CAE
(computer-aided engineering) refers to front-end simulation and
analysis tools and logic capture. CAD has been reduced in scope to
cover those tools which are used to assist in the physical mechaniza-
tion of a design (e.g., layout tools: placement and route, design rule

check, artwork generation, etc.)

CAE: Computer-Aided Engineering. Refers to front-end design tools such

as logic (design) capture, logic simulation, and timing analysis. (Also,
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see CAD.)

CALMA: A turn-key CAD system. A variety of models are available. A
popular system for VLSI layout. No automatic placement or routing
is available. All layout is performed manually, or by CALMA GPL
programs. The main CAD system is GDS II. The CALMA Stream
Format is an induétry—recognized format for layout geometry

description.

CMOS: Complementary Metal-Oxide Semiconductor. Several technologies
exist for use in building integrated circuits, CMOS being one of
these. Others include nMOS and bipolar technologies. Each tech-
nology has unique features that make it suitable for different operat-

ing environments and performance requirements.

Computervision {CV}): A turn-key CAD system. This system supports a
wide variety of CAD applications, including mechanical CAD, archi-
tectural design, piping, and electronics. CV is primarily a drafting
tool; however, it does support some design automation tools. The
local processing power restricts CV's usefulness to smaller-scale
designs. New and more powerful CV hardware will become available

in the near future.

Database (DB): A database can be anything from a structured collection of
files which contain the data manipulated by a DBMS to a loose set
of files which contains data. In CAD circles, the term has been used
to cover the gamut. From a computer science perspective, a data-

base is a collection of data which is organized into a physical struc-
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ture which supports a logical view or model of the data. Tradition-
ally, there are three recognized logical models for a database:
hierarchical, network, and relational. In practice, many commercial

CAE/CAD/CAM vendors refer to a conventional file as a database.

Data Base Intermediate Format (DBIF) - This is a Prolog-compatible
representation of a CAE/CAD/CAM database, the form of which
has been developed as part of this dissertation. All native syntax
from the original system is removed and only the data content and

schema is apparent in the DBIF.

Data Base Management System {DBMS) - A system which stores data in a
way which facilitates the interaction with the data by users and pro-

grams according to a pre-specified logical view or data model.

EBCDIC - Extended Binary Coded Decimal International Code. This is an
eight bit character code used to represent alphanumeric data.
There are 256 unique characters which are represented with this

code.
ECL - Emitter-Coupled Logic. A family of logic such as nMOS and CMOS.

HDL - Hardware Design Language. This is a language which is used to
represent the logical and physical characteristics of a circuit. The
language can be used to generate a CAE/CAD database and/or it
can be used directly to drive various CAE/CAD tcols, such as simu-

lation and routing.

IC - Integrated Circuit. This is a circuit built entirely upon a single chip
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(usually of silicon).

IGES - Initial Graphics Exchange Specification. This was a cooperative
effort to define an industry standard for the exchange of graphics

CAD data between distinet CAD system types.

IPC - Institute of Printed Circuits. This agency has defined standards for
the description of physical characteristics which define printed cir-

cuit board.

KBS - Knowledge Based System. A system different from conventional,
procedural systems which are driven by logic embedded within the
program. A KBS has a generalized inference engine which can be
used to derive facts based upon the content of a database of

knowledge (knowledge base).

NAND - One of the Boolean functions of two variables. This function re-

turns true if both inputs are false.

NMOS - N-channel Metal Oxide Semiconductor. A family of logic such as
ECL and CMOS.

PCB - Printed Circuit Board. This is a means of building an electronic cir-
cuit whereby the interconnections between components are imple-
mented as copper lines sandwiched between layers of non- conduc-
tive material. The copper lines are forined by etching into a copper

sheet that has been laminated onto the non-conductive material.

PROLOG - A programming language which is used for logic programming

and artificial intelligence applications.
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PWB - Printed Wiring Board. This is another term for PCB.

VLSI - Very Large Scale Integration. Refers to the highest degree of densi-
ty in electronic circuitry attainable at the present. The density is
evident in the number of logic elements contained on a single chip

and in the small size of interconnect lines.



APPENDIX B
ALTERNATIVE PROTOTYPE IMPLEMENTATIONS

In the course of developing this methodology for data base tran-
sport, a system block diagram was developed and analyzed long before Pro-
log was selected as a means for implementation. In fact, since the topic of
research dealt with data, the first implementation approach attempted was
a to use a relational DBMS with application programs built upon it to pro-

vide the necessary functionality.

For example, the first DBIF selected was a relation with domains
"ID", "Predecessor”, "Key", "Field", and "Value". The first encoding of
pR‘.’ is shown in Figure B.1. Note that there is already a problem since, it
is not clear what data type should be given to the domain "Value". Each
different value of "Field" will have a different data type associated with the
domain "Value". For example, the data type for "Value" should be "text"
if the value of "Field" is (Body) or (Node); whereas the data type should be

"coordinate" if the value of "Field" is (Nodexy).

Another use of a relational data base for the prototype was a pair of
I'-e.lziéions "Key Table" and "Translate Table", used to store translation
rules. The relation "Translate Table" was used to store logical relation-
ships between data items which were stored in "Key Table". Actual tables

were defined using the INGRES DBMS and rudimentary DR1-DR2 transla-
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ID Pred
1 0
2 1
3 2
4 3
3 4
6 5
7 6
8 7
9 8

10 9

11 10

12 11

13 12

14 13

15 14

16 15

17 16

18 17

19 18

20 19

21 20

22 21

23 22

Key

12
13
14
13
14
13
14
13
14
12
13
14
13
14

Field

Body
Node
Nodexy)
Node)
Nodexy)
Node)
Nodexy)
Node)
Nodexy)
Body
Node
Nodexy)
Node)
Nodexy)
Node)
Nodexy)
Body
{Node
Nodexy)
Node)
Nodexy)
Node)
Nodexy)

Value

A
R

(1,9)
S
(1.8)
B9)
N
(2,8)
B
I1
(3,4}
12
(3,2)
Y
(4.3)
C
It
(5.8
(5.6)
Y
(6.7)

ID Pred
24 23
25 24
26 25
27 26
28 27
29 28
30 29
31 30
32 31
33 32
34 33
35 34
36 35
37 36
38 37
39 38
40 39
41 40
42 41
43 42
44 43
45 44
46 45

Field

Signal)
Sigxy
Sigxy
Signa
#Sigxy

)

Sigxy
Signal)
Sigxy

Sigxy

Signal)
Sigxy
Sigxy
Signal)
Sigxy
Sigxy

Sigxy
Sigxy
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Sigxy
Sigxy
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Sigxy
Sigxy
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Figure B.1. Original DR2 Representation as a Relation.

tion rules were stored. The intent was to store facts such as "data time A

from system 1 translates into data item B from system 2".

As the research continued into specific data relationships between

systems, it became obvious that translation would not be one-to-one.

fact, some translations are conditional, and there were no facilities to store
this kind of information.
conventional DBMS’s which make this more feasible {Ston80]. In short, it

became obvious that to solve the CAE/CAD/CAM data transport problem

Stonebraker and Keller propose extensions to

with a relational DBMS was not a good match.
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Not only was it difficult to express translation knowledge into a rela-
tion, but the queries to extract out translated data were difficult to formu-
late. Also, there was no built-in mechanism for reasoning (e.g. an inference
engine). This would need to have been built. At that point, the process of
developing the prototype was severly impacted and the approach was

dropped in favor of using Prolog.



APPENDIX C
CALMA STREAM FORMAT DATA
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Dump of file _DUAO: ERPH.MLCISTREAM.3;1 an
3-0CT-1984 14:12:21.53

File ID (10533,14,0)

Virtual block number &t (00000001),

1A000A00
05000B00
{42442E4E
S42ES44E
00000000
00000000
00000058
00000000
49534447
00000000
00000000
AF443A49
00000000
00060000
413E0S03
1coofosa
53002100
41400606
06000008
51000310
4700DB33
51004084
o&o%booa
4F060310
47000000
4Foa§oeq
os0gpooa
51000310
4700D833
51004084
06000008
4C060310

[=)
]
[T L I 1 I 1 1}

53000201
1A000A0O
594C4952
AFA63A49
00000000
00000000
S42E544E
00000000
00000000
00000058
00000000
49534447
00000000
00000000
140G0300
9BA02FBO
04000B0O
10002500
0404056
2009?000
FEFFAB24
0400A059
040¢0011
2€04p000
00008058
040QA0S?
040¢go11
2co@booo
FEFFAB24
040QA0S57
040G001 1
2C00p000

BOUNDARY
BGNLIB
BGNSTR
DATATYPE
ENDEL
ENDSTR
FONTS
GENERATIONS

512 (0200) bytes

End of file block B /7 Allocated 9

-
1€0Q0400 02000600 «evvvsesee-Seass 000000
53000000 000Q0000 .......S.cc--u.- 000010
414D0602 OEOQO000 ......MARILYN.DB 000020
49534447 0620B400) .. .GDSII:FONT.T 000030
00000000 O00000SE X.vceeeecenoaess 000040
00000000 00000000 ...ecvvvceeeeanas 000050
4F443A49 49534447 GDSII:FONT.TX... 000060
00000000 00000000 ...cvcveauesan--. 000070
00000000 00000000 ..c.-.c--- .. -BDSI 000080
S42ES44E 4F463A49 I1:FONT.TX....... 000090
00000000 00000000 .eeveeeeuneanaes OO0OAO
00000000 00000000 ........BGDSII:FD 000OBO
00000058 SA2ES44E NT.TX....e...... 000OCO
00000000 00000000 ...... ceeeaca-a. 0000DO
02220400, ‘00000000 +.....".......>A OOOOEO
A439EFA7 C64B3789 .7K...9D./..Z... OOGOFO
1A000A00 53000205 ...S..... «e=-1.S 000100
04000B00 1A000A00 ..c.....-%....MA 000110
4S445F4E 594C4952 RILYN_DEV....... 000120
020E0A00, 2800020D ... (...cuuuy--.0 000130
51004084 0400AB24 $....9.@%...3..6 000140
470QDB33 FEFFAOS? Y...3..6Y....2.0 000150
04004084 0400A824 $....2..-ccu.... 000160
020ED600)/0100020D eveveeeenny--.0 000170
4F004084 04008058 X....2.0X......G 000180
47000000 0000A0S5? Y......GY....2.0 000190
0400A084, 04008058 X....Beuevsom-0. 000IA0
020£0600)(0100020D - - - vev-vvy.--@ O0OLBO
51004084 0400AB24 $....3.Q%...3..6 0001CO
470QD833 FEFFAOSF Y...3..6Y....2.@ 0001DO
oqoggoa4 0400AB24 $....9.......... OOO1EQ
020E0600) (0A000Z0D vevsveevnssssssl OOOLFO
LEGEND

H = HEADER SN = SNAME

L = LIBNAME SR = SREF

LY = LAYER ST = STRANS

MG = MABNIFICATION T = TEXT

P = PATH TT = TEXTTYPE

PR = PRESENTATION U = UNITS

S = STRNAME W = WIDTH

SG = STRING XY = XY COORD

2la

G,U
BS

s
B
LY,DT, XY

EL,B
LY,DT, XY

EL,B
LY, DT, XY

EL,B
LY,DT, XY



Dump of file

File ID (10533,14,

Virtual block number 2 (00000002),

040040BC
040080E7
04040011
2C0460000
000040BC
020QBOE7
03000011
31545FAE
40694700
020D0600;
58300000

AE0030B4
4coQCo4s
06000008
AC000310
4E00409C
4Co0pOo71
1000000A
06000038
(eZeleleteleleld]
060GOA0Q

()]
S

4E004C84 040080E7
4AC0QC045 040040BC
04004084 040080E7
020E0600 ‘OAGO020D
4E00409C "000080E7
4C00007% 020040BC
0400409C Q0008CE7
594C495° A14D0&612
93100800ﬂ0000011

0070400, loo1 10403

_DUAGC: LRPH.MLCISTREAM.3;1 on

3-0CT-1584 14:12:

12 (0200) bytes

emaea@.N.J...2.N
«9..E..L....E..L

- N
S
ceeea@.N.D...D.N
e®..qeebennog..l
Y S
. .MARILYN_T18...
cecceeeacBGiDeann

0310140Q
[CO450400
050GOAVD,

CUA14800 40840400

030F090Q[0000020E

OA14800 .H.....3d. H....E.

20D0A00) 000$04005/00110400) -« < v e v o me e cnm e s

03102C00; 283A0000 030F0300ﬂ6000020E asesscarrelangen

BOATO30C EOD14D00 CO450400
/80380100, 404B4C00, BOAF0300
{00090400:/00110400)/80380100
"030F 0800, (0000020E 0&0GYOADO
409CO00C EOD14D00 03102400,
00000000 COA14800 00OGO000
(00080400} 00110400 {30960000
03105C00) 00000Z0E 06065300
04170300 AB245100 40840400
FCCA0100 3C344900 04170300
04170300 44804A00 FCCA0100
DB33FEFF AB245100 04170300
40840400 AVS94700 DBIZFEFF
{00080400/ 00110400 440840400
*03102C00}/0000020E 040GOBOO
FECA0100 440F4800 FCCA0100
08AL0000 3CI34900 04AL0000
(00080400/(001 10400} FCCA0100

LEGEND

BOUNDARY
BGNLIB
BGNSTR
DATATYPE
ENDEL
ENDSTR
FONTS
GENERATIONS

H
L
LY
MG
P
PR
s
S6

BL

DT
EL
ES

nnEwwnnn

nhwwwnnn

(38380000

HEADER
LIBNAME

LAYER
MAGNIFICATION
PATH
PRESENTATION
STRNAME
STRING

MeeocEcuMeeeee
«LKI.....LK3..8.

P

E0D14D00
404B4CO0
OO0AF4BOO,
OZ0D0L00) «cenevnneannnnen

eaeaBac M. @
MeceeneoHewonne

eHeeooe@ennaneen

EOD14D0O0
COA14800,
020D0600)
AB245100

vesssnnssvanneNaa

.Q%....2.G%.....
3€344900 .14<..ce,.14<¢0..,
44804A00 .J.D.....J.D....
AB245100 .0%......0%...3.
AOS94700 .GY...3..6Y....d
AB245100 .Q@%....@ecuranen
020D0&00) s e vresnsssocopen
3C344900 .14<.....H.D....
440F4B00 .H.D.....14<....
3C3I44900 X4<Ceccacnnnnnns

SNAME
SREF
STRANS
TEXT
TEXTTYPE
UNITS
WIDTH

XY COORD

Hannuwaannn

213

21.53

End of file block 8 / Allocated 2

000000
000010
000020
000030
000040
©00050
000060
000070
000080
0000790
0000A0
0000BO
000000
0000D0
O000EOQ
0000F0
000100
000110
000120
000130
000140
000150
000140
000170
000180
000190
0001A0
C001BO
0Q01Co
0001D0O
O001EO
0001FO

EL,B

LY,DT, XY

EL, SR, SN

ST, XY
EL,P,LY
DT, W, XY

EL,P,LY
DT, 4, XY

EL,P
LY,DT,W
Xy

EL,B
LY,DT, XY

EL,B

LY,DT, XY

EL,B



Dump of file

File ID (103533,14,0)

Virtual block number 3 (00000003),

_DUAO: LRPH.MLCISTREAM.3;1 on
3-0CT-1984 14:12:
End of file block 8 / Allacated 2

512 (0200) bytes

03102C00 ‘0000020E 060GOBOO O20DOA00) « v v casannssnyas
FCCA0100 44B04A00 FCCA0100 3CAS4BOC .K.<....-J.D....
04ALO000 3CASABO0 04AL0000 44804A00 .J.D...-..Ke<ou.u.
(00080406) 00110400, FECAO100 3CASABOO .Kuewuo-n- “een-
03102C00; DGO002Z0E '06000BO0 020D0&00) v e sssoencanyan
3C670200 44F14C00 3C470200 7CB24E00 .N.f..g<.L.D..g<
04A60000 7CB24E00, 08AG0000 44F14C00 .L.D.....N.t....
(00080400C: 00110400, BC679200 7CB24E00 .N.i..g€evcncan-
03102C00] HOCO020E 06000BOO 0Z0D0S00) e veeenucanney.-n
B44F0400 7CB24E00 40840400 7CB24EOO .N.!...@.N.i..0.
40840400 44F14C00 B44AF0A00 44F14C00 .L.D..0..L.D...d
{000B040G 00110400 (30840400 7CB23EO0 .Noicco@enuaon-.
03102C00) H000020E 0L0CHBOO 020DOE00) « v nsvneansnnnyan
FC3B0400 440FAB00 FC3B0400 3C344900 .14<..;..H.D..;.
04170300 3C344900 04170300 440F4B00 .H.D.....I4<....
(00080400,/00110400) FCIBOA0O 3CIA4900 o I4Loufencnnnnn.
03102C00)/0000020E OL000DBO0 O20D0A00) +aevreceecvssyon
FC3BU400 44BO4A00 FC3B040O 3CASABOO .K.<..3-.J.D..j;.
04170300 3CASABOO 04170300 44B04A00 .J.D.....K.<ea..
(00070400700110400,FCIBOS00 ICASABOO .KeCevfoneonnnan-
26000200 '0B001A00 0AV0S300 02051C00) v eseeSuannncnneak
oeoe:oo /1C000400 OBOOIAC0 OACDSI00 .Gevnevuoacacnan
{ocoB040 00383154 SF4ES94C 4952414D MARILYN_T18.....
03102C0C/0000020E 050Q0A00 020D0E00) - e v v e vnrennny--
C0450400 CO0450400 CO450400 400DO300 ...d..E...E...E.
400D0300 400DO300, 400D0300 CO450400 . .Eevee@eud...d
(0080400} 00110400;;T04FQ400 400D0300, « 2 e@-oEevocovnn..
03107C00 JO000020E 060GOA00 020D0L00) - eevrace-censlan
409C0000 £0D40100 409C0000 409C0000 oo o@eec@eencaa.d
COD40100 £C550100 COD40100 COD40100 nccvvc-weolonn..
BAS30200 1C190200 B4530200 CC550100 ..U...S...-...5.
S80F0200 2C400200 S80F0200 1C190200 ..u.w.-Xea@,...X
LEGEND
B = BOUNDARY H = HEADER SN = SNAME
BL = BGNLIB L = LIBNAME SR = SREF
BS = BGNSTR LY = LAYER ST = STRANS
DT = DATATYPE MG = MAGNIFICATION T = TEXT
EL = ENDEL P = PATH TT = TEXTTYPE
ES = ENDSTR PR = PRESENTATION U = UNITS
F = FONTS S = STRNAME W = WIDTH
G = GENERATIONS SG = STRING XY = XY COORD

214

21.53

000000

000010
000020
000030
0000430
000050
00006460
000070
0006080
000090
0000A0
00CGOBO
0000C0
0000Dho
000CEO
00COFO
000100
000110
000120
000130
000140
000150
000140
000170
000180
000190
0001A0
0001B0O
000100
0001D0
0001E0
C001FO

LY,

EL,
LY,

EL,
Ly,

EL,
LY,

EL,
Ly,

EL,

BS
S
B

LY,

EL,
LY,

DT, XY

B

DT, XY

B
DT, XY

B
DT,SY

B
DT, XY

ES

DT, XY

B
DT, XY



Dump of file _DUAO:[RPH.MLCISTREAM. 331 on
3-0CT-1984 14:12:21.53
File ID (10533,14,0) End of file block 8 / Allocated %

Virtual block number 4 (00000004),

ABD20200 1C190200 ABD20200
ACBE0200 341B0100 ACBE0200
E0D40100_409C0000 COD40100
{00080400)/00110400Y409C9000
03107C00," 0000020E 0&000A00
409C0000 CO450400 409C0000
CODA0100 CCC60300 CODA0L00
ACBE0200 E4CB0200 4CBE0200
ABD20200 DAA10200 ABD20200
SBOF0200 E4CBO200 SBOF0200
B4530200 348C0300 B3S530200
COD40100 400D0300 L£OD40100
(00080400001 10400/(409C0000
03102C00)0000020E 0500200
DOFB0100 785D0200 DOFB0100
30E60200 54050200, SOE&0200
{00080400}{00110400 YDOFB0100
03102C00) 0000020E 05000200
DOFBO100 4CDCOZ00 DOFB0100
30E40200 88840200 IOE40200
00080400 00110400}/DOFBO100
03105C00)00C0020E 04000A00
CO450400 CODA0100 CO450400
FB9S0300 4CBEQ200 FEPS0300
38C10100 BAS30200 38C10100
D8470300 CODA0100 DB470300
400D030Q 407C0000, 400D0I00
(00080400) (001 10400}(C0450400
0102C00)/0000020E oaoggaoo
94050200° FO470200 94050200

CDCO200 SBOF0200, &CDCOZ00
/00080400}00110400/(94050200

512 (0200) bytes

2C400200 ..@y-ceemeanenn-
1€190200 .......L...4...L
341B0100 «..8ierenna@enn.
A409C0000 +..@uee@euunoaen
020D0400) +eevvenoanmnntan

cee@ee.@Elll.d

seEecerenvanonnn

400D0300
C0450400
CCC40300
E4ACB0200
D4A10200
E4CB0200
348C0300
400D0300

svenvasbecaaaadl

ssvsvasXecnneaaX
reeossSeasaf..S.

ceeBecenacadecan

svaDesePDacncnanse

020D0&00) e eceenvmacacnyan
94050200 .ecceencaelXanns
785D0200 ..3X...0.cc0ca.0

4050200 . eeenrecnoononns
020D0600) «ovvuccncacenyen
BH840200 .e.ceceeveelen..
6CDCO200 ...1...0ueu.-".0
BE840200 - cceeecacoanoens
Q20D0600) v v eucenaeecana\e-
409C0000 ...d..Ee.cu...E.
CODA0100 «ovveeeeuealeonns

4CBE0200
BAS30200
CcoDn40100
407C0000

020D0600)

S80F0200
F0490200

esele..8..5....8
aeBeaaBennenaalGn
cescsse@ieaPaead

ere@ecBaciennceas

aesXeoceseeleanen

eelaeeeloeaXaaal
SB0F0200 «voXeveeucaamons

LEGEND
B = BOUNDARY H = HEADER SN
BL = BGNLIB L = LIBNAME SR
BS = BGNSTR LY = LAYER ST
DT = DATATYFE MG = MAGNIFICATION T
EL = ENDEL P = PATH TT
ES = ENDSTR PR = PRESENTATION u
F = FONTS S = STRNAME W
G = GENERATIONS S6 = STRING Xy

al5

nuwuwnuwmwnm

SNAME
SREF
STRANS
TEXT
TEXTTYPE
UNITS
WIDTH

XY COORD

000000
000010
000020
000030
000040
000050
000060
000070
000080
000090
0000A0
0000BO
0000Co
0000D0
0000EO0
000CFQ
000100
000110
000120
000130
000140
000150
000160
000170
000180
000190
C0GtA0
0001BO
0001CO0
000:tDO
0001E0
0001FO

EL,B
LY,DT, XY

EL,B
LY,DT, XY

EL,B
LY, DT, XY

EL,B
LY, DT, XY

EL,B
LY, DT, XY

EL,B



Dump of file

File ID (10533,14,0)

_DUAO: (RPH.MLCISTREAM.3;1 an

3-0CT~-1984 14:12:21.53

Virtual block number 5 (00000005), 512 (0200) bytes

03102C00) (0000020 04000400
94050200 ABD20200 98050200
6CDCO200 10980200 &4CDCO200
{000B0400;:00110400 §4050200
03102C00, 0000020E 060¢0800
1C190200 68360200 1€1790200
E4ACBO200 E0220200 EA4CB0200
- 000804001001 10400/ (1C190200
03102C00 JO0000Z0E 040G0800
1£190200 20BF0200 1C190200
E4CB0200 98AB0200 E4CB0200
100080404 /00110400 (1€199200
03102C00)(0000020E 05052900
FCCAOIOO 04170300 FCEA0100
04170300 FCCAO100 04170300
000B0A00) 00110400 (FCCAO100
03102C00)/0000020E 046000800
04170300 FC3B040O 04170300
FC3B04C0 8200300 FC3IB0O400
000C0400, :00110400//04170300
01170600, (00000214 06001000
,00004041 051BOCO0; 0006011A
/CCC40300 FO490200 03100C00!
(oooeoaomgox 10400)(0D383154
03102C00) {[0000020E 050¢0400
CB200300 38320400 CH200300
£8320400 BC2A030Q 38320400
00070400 (00110400/€8200300

02000500 v eveanmncsacnapesn
10980200 eoveacacecencenn
ABD20200 ++necesalecananal
10980200 cveenmcacnnncanee
0O20D0600) cecvnennnanns ye-
E0220200 .."cvenennbhaca.
683460200 ..bheeeenaann..

EQ220200 .."

020D0600; s cecconccaanagesn

FBAB0O200 ..c.cconcnnn

20BF0200 ...

9BAB0200 +cevecaecanncann
020D0L00) = vusszgeennnnsnn
FCCAOL00 ..oveireeeancans
08170300 vevcecncnnnnanan
FCCAGI0Q +.vcvcncncncenns
0Z0D0800} «vvcavacennacyan

C8200300 ..

€B8200300 ..

O LT

FE3B0400 eejeucsonn

O20N00800, vocenancnararaans
060(0500 .coveeneeaaafd..
00000000, - v.ovuneealonaan
06190800 » ... T18. ccuvnn.-

020D0800) +osevvrmunnn-n
8C2A0300 ..%...
38320400 ..28..28..%...28

8C2A0300

S

een28a. &

00000000 00000000 00000000(0004040@ cesrsancesavanae

00000000 00000000 00000000

00000000

00000000 00000000 00000000 00000000 ...ccvavanena e

00000000 00000000 00000000 00000000 .......

LEGEND

BOUNDARY H
BGNL 1B L
BGNSTR LY
DATATYPE MG
ENDEL. o4
ENDSTR PR
FONTS ]
GENERATIONS =1c]

gnnauuan

m
r
nhuawnunn

HEADER

L IBNAME
L.AYER
MAGNIFICATION
PATH
PRESENTATION
STRNAME
STRING

UNITS
WIDTH

-
Hauounuowumn

End of file block B / Allocated 7

000000
000010
©00020
000030
000040
000050
000040
000070
000080
000070
0000A0
0000BO
©000C0
000000
COOOEO
CO000FO0
000100
000110
000120
000130
000140
600150
0001450
000170
000180
000150
0001A0
0001B0O
0001C0
000100
0001EO
CO01FQ

TEXTTYPE

XY COORD

LY, DT, XY

EL,B
LY, DT, XY

EL,B
LY,DT, XY

EL,B
LY, DT, XY

EL,B
LY, DT, XY

EL,T

LY, TT,PR
ST, MG

Xy
SG,EL, B
LY,DT, XY

EL,ES
ENDLIB



APPENDIX D
DBIF REPRESENTING CALMA STREAM FORMAT



IS_A {(gdsll.library, 1%)

ATTR ( 1%, libname, MARILYN.DB)

ATTR ( 1%, font definition, GDSII:FONT.TX)

ATTR ( 1%, font definition, GDSII:PONT.TX)

ATTR ( 1%, font definition, GDSII:FONT.TX)

ATTR ( 1%, font definition, GDSII:FONT.TX)

ATTR ( 1%, generations, 3)

ATTR ( 1%, database units/user units, 0.10000002D-02)
{

ATTR 1%, database units/meter, 0.00000000D+00)
IS_A (gdsIl.structure, 2%) :

ATTR { 2%, sname, MARILYN_DEV )

IS_A (gdsII.boundary, 3%)

HAS ( 2%, 3%)

LAYER ( 3%, 40)

ATTR ( 3%, datatype., 0)

VERTEX 3%, < 5317800, 296000>, 1)

(
VERTEX {( 3%, < 5317800, -117800>, 2)
VERTEX ( 3%, < 4676000, -117800>, 3)
VERTEX { 3%, < 4676000, 296000>, 4)
VERTEX ( 3%, < 5317800, 296000>, 5)
IS_A (gdslI.boundary. 4%)

HBAS ( 2%, 4%)

LAYER { 4%, 1)

ATTR ( 4%, datatype. 0)

VERTEX ( 4%, < 5200000, 296000>, 1)
VERTEX ( 4%, < 5200000, 6>, 2)
VERTEX ( 4%, < 4676000, 0>, 3)
VERTEX ( 4%, < 4676000, 296000>, 4)

VERTEX ( 4%, < 5200000, 296000>, 5S)
IS_A (gdslI.boundary, 5%)

BAS ( 2%, 5%)

LAYER ( 5%, 1)

ATTR ( 5%, datatype., Q)

VERTEX ( 5%, < 5317800, 296000>, 1)
VERTEX ( 5%, < 4676000, -117800>, 3)
VERTEX ( S%, < 4676000, 296000>, 4)
VERTEX { 5%, < 5317800, 296000>, 5S)
IS_A (gdsIl.boundary, 6%)

BAS ( 2%, 6%)

LAYER ( 6%, 10)

ATTR ( 6%, datatype., 0)

VERTEX ( 6%, < S040000, 296000>, 1)
VERTEX ( 6%, < 5160000, 296000>, 2)
VERTEX ( 6%, < 5160000, 280000>, 3)
VERTEX ( 6%, < 5040000, 280000>, 4)
VERTEX ( 6%, < S040000, 296000>, 5)
IS_A (gdslI.boundary., 7%)

HAS ( 2%, 7%)

218



LAYER ( 7%, 10)

ATTR ( 7%, datatype, 0)

VERTEX ( 7%, < 5040000, 40000>,
VERTEX ( 7%, < 5160000, 40000>,
VERTEX ( 7%, < 5160000, 160000>,
VERTEX ( 7%, < 5040000, 160000>,
VERTEX ( 7%, < 5040000, 40000>,
IS_A (gdsIl.sref, 8%)

HAS ( 2%, B8%)

ATTR ( 6%, sname, MARILYN_T18
VERTEX ( 8%, < 4680000, 0>,
ORIENT ( 8%, 0.00, 0.00, 0.00)
IS_A (gdslI.path, 9%)

HAS ( 2%, 9%)

LAYER ( 9%, 10)

ATTR ( 9%, datatype, 0)

WIDTH ( 9%, 15000)

VERTEX ( 9%, < 4760000, 296000>,
VERTEX ( 9%, < 4760000, 2800005,
IS_A (gdsll.path, 10%)

BAS ( 2%, 10%)

LAYER ( 10%, 10)

ATTR ( 10%, datatype, 0)

WIDTH ( 10%, 15000)

VERTEX ( 10%, < 5100000, 280000>,
VERTEX ( 10%, < 5100000, 240000>,
VERTEX ( 10%, < 5000000, 2400005,
VERTEX ( 10%, < 5000000, 80000>,
VERTEX ( 10%, < 4960000, 80000>,
IS_A (gdsIl.path, 11l%)

HAS ( 2%, 1ll%)

LAYER ( 11%, 10} '

ATTR ( 1l1%, datatype, 0)

WIDTH ( 1l1%., 15000)

VERTEX ( 1l%, < 5100000, 40000>,
VERTEX ( 11y, < 5100000, 0>,
VERTEX ( 11%, < 4760000, 0>,
VERTEX ( 113, < 4760000, 40000>,

219

1)
2)

1)
2}
3)
4)
5)

1)
2)
3)
4)



IS_A (gdsll.boundary, 12%)

BAS (

LAYER ( 12%,

ATTR (
VERTEX
VERTEX
VERTEX
VERTEX
VERTEX
VERTEX
VERTEX
VERTEX
VERTEX
VERTEX
VERTEX

IS_A (gdsll.boundary, 13%)

BAS (

LAYER ( 13%, 11)

2%, 12%)

3)

12%, datatype.,

12%,
12%,
12%,
12%,
12%,
12%,
12%,
12%,
12%,
12%,
12%,

P S SOy P, P g S S~ S~
AANAAANANAAANANAN

28, 13%)

5317800,
5317800,
4797500,
4797500,
4882500,
4882500,
5317800,

296000>,
202500>,
2025005,
117500>,
1175005,
202500>,
202500>,

5317800, -117800>,

4676000,
4676000,
5317800,

ATTR ( 13%, datatype.,

VERTEX
VERTEX
VERTEX
VERTEX
VERTEX

IS_A (gdslI.boundary, 1l4%)
2%,
LAYER { 1l4%,

HAS (

( 133, <
{ 133, <
( 138, <
( 138, <
( 13%, <

14%)

11)

4797500,
4722500,
4722500,
4797500,
4797500,

ATTR ( l4%, datatype,

VERTEX
VERTEX
VERTEX
VERTEX
VERTEX

{ 148, <
( l4g, <
( 14%, <
( 148, <
{ 14%, <

4957500,
4882500,
4882500,
4957500,
4957500,

-117800>,

2926000>,
2960005,

)
117500>,

117506>,
42500>,
425005,
1175005,

1175006>,
1175003,
42500>,
42500>,
117500>,

IS_A (gdslI.boundary., 1l5%)
HAS ( 2%, 15%)
LAYER ( 15%, 11)

ATTR ( 15%, datatype., 0}

VERTEX ( 15%, < 5157500, 157500>,
VERTEX ( 15%, < 5042500, 157500>,
VERTEX ( 15%, < 5042500, 42500>,
VERTEX ( 15%, < 5157500, 42500>,
VERTEX ( 15%, < 5157500, 1575005,
IS_A (gdsII.boundary., 16%)

HAS ( 2%, l6%)

LAYER ( 16%, 11)

ATTR ( 16%, datatype,

VERTEX { 16%, < 5157500, 296000>,
VERTEX ( 16%, < 5157500, 282500>,
VERTEX ( l6%, < 5042500, 282500>,
VERTEX { 16%, < 5042500, 296000>,
VERTEX ( 16%, < 5157500, 296000>,

220

1)

3)
4)
5)



IS_A (gdsIlI.boundary., 17%)
HAS ( 2%, 17%)

LAYER ( 17%, 1l1)

ATTR ( 17%, datatype, Q)

VERTEX ( 17%, < 4797500, 277500>,
VERTEX ( 17%, < 4722500, 2775005,
VERTEX ( 17%, < 4722500, 202500>,
VERTEX ( 17%, < 4797500, 202500>,
VERTEX ( 17%, < 4797500, 277500>,
IS_A (gdsIl.boundary, 18%)

HAS ( 2%, 18%)

LAYER ( 18%, 1l)

ATTR ( 18%, datatype, O0)

VERTEX ( 18%, < 4957500, 2775005,
VERTEX ( 18%, < 4882500, 277500>,
VERTEX ( 18%, < 4882500, 202500>,
VERTEX ( 18%, < 4957500, 202500>,
VERTEX ( 18%, < 4957500, 277500>,
IS_A (cdsIX.structure, 19%)

ATTR ( l1l%%, sname, MARILYN_TI18
IS_A (gdsIl.boundary, 20%)

HAS ( 19%, 20%)

LAYER ( 20%, 1l0)

ATTR ( 20%, datatype, 0)

VERTEX ( 20%, < 200000, 283C00C>,
VERTEX ( 20%, < 280000, 28000C>,
VERTEX ( 20%, < 280000, 200000>,
VERTEX ( 20%, < 200000, 200000>,
VERTEX ( 20%, < 200000, 2B000O>,
IS_A (gdslI.boundary, 21%)

HAS ( 19%, 21%)

LAYER ( 21%, 10)

ATTR ( 21%, datatype.,

VERTEX ( 21%, < 40000, 40000>,
VERTEX ( 2l%, < 120000, 40000>,
VERTEX ( 21%, < 120000, 120000>,
VERTEX ( 21%, < 87500, 120000>,
VERTEX ( 21%, < 87500, 152500>,
VERTEX ( 21%, < 137500, 152500>,
VERTEX ( 21%, < 137500, 135000>,
VERTEX ( 21%, < 147500, 135000>,
VERTEX ( 21%, < 147500, 185000>,
VERTEX ( 21%, < 137500, 185000>,
VERTEX ( 2l%, < 137500, 167500>,
VERTEX ( 21%, < 72500, 1675005,
VERTEX ( 21%, < 72500, 120000>,
VERTEX ( 21%, < 40000, 120000>,
VERTEX ( 21%, < 40000, 40000>,

221

1)
2)
3)

'5)

1)
2)
3)
4)
3}

1)
2)
3)
4)
5)
6)
T)
8}
9)
10)
11)
12)
13)
14)
15)



IS_A (gdslI.boundary, 22%)
HAS ( 19%., 22%)
LAYER { 22%, 10)

ATTR ( 22%, datatype. 0)

VERTEX ( 22%, < 200000, 40000>,
VERTEX ( 22%, < 280000, 4000C>,
VERTEX ( 22%, < 280000, 120000>,
VERTEX ( 22%, < 247500, 1200005,
VERTEX ( 22%, < 247500, 167500>,
VERTEX ( 22%, < 182500, 167500>,
VERTEX ( 22%, < 182500, 185000>,
VERTEX ( 22%, < 172500, 185000>,
VERTEX ( 22%, < 172500, 135000>,
VERTEX ( 22%, < 182500, 135000>,
VERTEX ( 22%, < 182500, 152500>,
VERTEX ( 22%, < 232500, 152500>,
VERTEX ( 22%, < 232500, 120000>,
VERTEX ( 22%, < 200000, 120000>,
VERTEX ( 22%, < 200000, 40000>,

1S_A (gdslI.boundary, 23%)

BAS ( 19%, 23%)

LAYER ( 23%,

2)

222

0)

0)

ATTR ( 23%, datatype.,
VERTEX ( 23%, < 132500,
VERTEX ( 23%, < 155000,
VERTEX ( 23%, < 155000,
VERTEX ( 23%, < 132500,
VERTEX ( 23%, < 132500,
IS_A (gdsll.boundary, 24%)
HAS ( 19%, 24%)

LAYER ( 24%, 2)

ATTR ( 24%, datatype,
VERTEX ( 24%, < 165000,
VERTEX ( 24%, < 187500,
VERTEX ( 24%, < 187500,
VERTEX ( 24%, < 165000,
VERTEX ( 24%, < 165000,

130000>,
130000>,
190000>,
1%0000)>,
130000,

130000>,
130000>,
190000>,
190000>,
130000>,

1)
2)

4)
5)



IS_A (gdsIl.boundary, 25%)
HAS ( 19%, 25%)
LAYER ( 25%, 10)

ATTR ( 25%, datatype, 0)
VERTEX ( 25%, < 40000,
VERTEX ( 25%, < 120000,
VERTEX ( 25%, < 120000,
VERTEX ( 25%, < 167500,
VERTEX ( 25%, < 167500,
VERTEX ( 25%, < 152500,
VERTEX ( 25%, < 152500,
VERTEX ( 25%, < 120000,
VERTEX ( 25%, < 120000,
VERTEX ( 25%, < 40000,
VERTEX ( 25%, < 40000,
IS_A (gdsll.boundary, 26%)
BAS ( 19%, 26%)

LAYER ( 26%, 4)

ATTR ( 26%, datatype, 0)
VERTEX ( 26%, < 135000,
VERTEX ( 26%, < 150000,
VERTEX ( 26%, < 150000,
VERTEX ( 26%, < 135000,
VERTEX ( 26%, < 135000,

IS_A (gdsll.boundary, 27%)
BAS ( 19%, 27%)

LAYER ( 27%., 4)

ATTR ( 27%, datatype,
VERTEX ( 27%, < 170000,
VERTEX ( 27%, < 185000,
VERTEX ( 27%, < 185000,
VERTEX ( 27%, < 170000,
VERTEX ( 27%, < 170000,
IS_A (gdsIl.boundary, 28%)
HAS ( 19%, 28%)

LAYER ( 28%, 8)

ATTR ( 28%, datatype, 0)
VERTEX ( 28%, < 140000,
VERTEX ( 28%, < 145000,
VERTEX ( 2B%, < 145000,
VERTEX ( 28%, < 140000,
VERTEX ( 28%, < 140000,
IS_A (gdsII.boundary, 29%)
HAS ( 19%, 29%)
LAYER ( 29%, 8)

ATTR ( 29%, datatype.,

0)

0)

223

280000>,
280000>,
235000>,
235000>,
115000>,
115000>,
215000>,
215000>,
200000>,
200000>,
280000>,

1325005,
132500>,
187500>,
187500>,
132500>,

132500>,
132500>,
187500>,
187500>,
132500>,

137500>,
137500>,
182500>,
182500>,
137500>,

1)
2)
3)

5)

1)
2)
3)

5)



VERTEX ( 29%, < 175000, 137500>, 1)
VERTEX ( 29%, < 180000, 137500>, 2)
VERTEX ( 29%, < 180000, 182500>, 3)
VERTEX ( 29%, < 175000, 18250C>, 4)
VERTEX ( 29%, < 175000, 137500>, 5)
IS_A (gdsll.boundary, 30%)}

HAS ( 19%, 30%)

LAYER ( 30%, 25)

ATTR ( 30%' datatype:

VERTEX ( 30%, < 117500, 117500>, 1)
VERTEX ( 30%, < 202500, 117500>, 2)
VERTEX ( 30%, < 202500, 202500>, 3)
VERTEX ( 30%, < 117500, 202500>, 4)
VERTEX ( 30%, < 117500, 117500>, 5)
IS_A (gdsII.boundary, 31%)

HAS ( 19%, 31%)

LAYER ( 31l%, 8)

ATTR ( 31%, datatype,

VERTEX ( 31%, < 205000, 202500>, 1}
VERTEX ( 31%., < 277500, 202500>, 2)
VERTEX ( 31%, < 277500, 277500>, 3)
VERTEX { 31%, < 205000, 277500>, &)
VERTEX ( 31%, < 205000, 202500>, 5)

IS_A (gdsII.text, 32%)
BAS ( 19%, 32%)

LAYER ( 32%, l6)

ATTR ( 32%, vertical presentation, MIDDLE)
ATTR ( 32%, horizontal presentation, CENTER}
ATTR { 32%, mag, 0.00000)

VERTEX ( 32%, < 150000, 247500>, 1)
ATTR ( 2%, String. T8 )

ORIENT { 32%, 0.00, 0.00, 0.00)

IS_A (gdsII.boundary., 33%)

HAS ( 19%, 33%)

LAYER ( 33%, 4)

ATTR ( 33%, datatype, 0)

VERTEX ( 33%, < 207500, 205000>, 1)
VERTEX { 33%, < 275000, 205000>, 2)
VERTEX { 33%, < 275000, -275000>, 3}
VERTEX { 33%, < 207500, 275000>, 4)
VERTEX ( 33%, < 207500, 205000>, 5)
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APPENDIX E
TDL DBIF

dbid(jkfl,tdl,'1",'2/21/84:10:05").

content([descript _ class(gate),

dir _name(’'rph’), pin_dir(in}, has(’clock’,in),

has(’j’,in), has('k',in), has('ps’,in),

has('pc’,in), pin__dir(out), has{'oq’,0ut),

has('ogb’,out),

desc("THE MODULE IS A MASTER / SLAVE JK FLIP-FLOP \
WITH PRESET AND PRECLEAR LINES. ; '),

delay('nandel’,3,2,4,'/’), delay('not’,3,2,4,'/),

use('dig__ _3__ _nand’,’="nand’,3,1,none,'nandel’),

use('dig_ _2_ _ nand’,’='nand’,2,1,none,'nandel’),

occ_name(’devl’), connect{'devl’’'nand_ _a'out,'l’),

has('devl’,'dig__ _3__ _nand’j,

connect('dev1’,'j’,in,'1l"),

connect('dev!’,'qb’,in,'2"),

connect('devl’,'clock’,in,'3"),

occ_name('dev2’), connect(’dev2','nand _ _b’,cut,'l’),

has('dev2’,'dig_ _3____nand’),

connect('dev2’’k’,in,’1’),

connect('dev?2’,'q’,in,'2’),

connect('dev2’,'clock’,in,'3’),

occ__name('dev3’), connect('dev3’,'nand_ _c’,out,'l’),

has('dev3'’'nand’), connect('dev3',’ps’,in,'l’),

connect('dev3’,'nand _ _a'in,'?'),

connect('dev3’,'nand _ _d',in,’3"),

occ__name('dev4’), connect('dev4’,’'nand _

has('dev4’,'nand’'), connect('dev4’,’pc’,in,’'1’),

connect('dev4’,'nand _ _ b',in,'?’),

connect{’dev4’,’'nand __ _ ¢’,in,’3"),

occ_name('devd’), connect('dev5’i',out,'l’),

has('dev5','not'), connect('dev5’,'clock’ in,'l’),

occ _name('dev6’), connect(’dev6’,'nand _ _e',out,'l’),

has('dev6’,'dig___ 2 nand’),

connect('dev6’,'nand _ _ ¢',in,’1"),

connect('dev6’,'i',in,’2’),

occ_name('dev7'), connect('dev7’,’'nand _ _{’,out,'l’),

has('dev7’,'dig__ _2__ _nand’),

connect(’dev7’,'nand __ _d',in,'l’),

connect('dev7’,'i’,in,’2’),

oce _name('g__ _nand'),

d’'out,'l"),



connect('g__ _ nand’,'q’,out,'l’),

has(’'g_ _nand’,’nand’),
connect(’gs__ _ nand’,'nand __ _¢',in,'1’),
connect(’gs__ _nand’,’qb’,in,'2'),
occ__name('k____nand’),

connect('h____ nand’,'qb’,out,'l’),

has(’h _ _nand’,'nand’),
connect('h _ _nand','nand_ _ f,in,'t’),
connect{'h _ __nand','q’,in,'2'),
occ__name('dev8’), connect('dev8’,'oq’0ut,'l’),
has('dev8''not’), connect('dev8’’q’in,'1’),
oce __name('dev9’), delay('dev9','1',1,'/"),
connect('dev9®’,’oqb’,out,'l’),

has{'dev9’,'not’), connect('dev9d’,’'qb’,in,'1’},
pin('oqb’), pin('oq’), pin{’pc’),

pin('ps’), pin('k’), pin(}’), pin(’clock’),
signal('qb’), signal(’q’), signal('nand _ _ 1),
signal{'nand _ _ e'), signal('i'}, signal('nand _ __d’),

signal{'nand _ _¢'), signal{'nand _ _b’),
signal('nand _ __a'), device('not’),
device('nand’), device('dig_ _ 2 nand’),

device(’dig__ _3_ _nand’), ext__out_ pin{'oqb’),
ext__out_pin('oq’), ext__in_ pin{'pc’),
ext__in_ pin{’'ps’), ext_in_pin(’k’),
ext__in_ pin('j'), ext_in_pin(’clock’), dummy]).

[
b
[=2]



APPENDIX F

DBIF REPRESENTING CIF IILE

IS_A (cif.symbol,

2%)

ATTR (2%, symbol_number, 1)

IS_A {(cif.polygon,
3%, XA)

LAYER (
VERTEX
VERTEX
VERTEX (
VERTEX (
VERTEX (

IS_A (cif.polygon,
4%,

LAYER (
VERTEX (
VERTEX (
VERTEX (
VERTEX (
VERTEX (

IS.A (cif.polygon,
5%,

LAYER (
VERTEX (
VERTEX (
VERTEX (
VERTEX (
VERTEX (

IS_A (cif.polygon,
6%, XC)

LAYER (
VERTEX (
VERTEX (
VERTEX (
VERTEX (
VERTEX (

IS_A (cif.polygon,
7%, XC)

LAYER (
VERTEX (
VERTEX (

VERTEX (-

VERTEX (
VERTEX (

3%)

3%, < 5317800,

296000>,

3%, < 5317800, ~-117800>,
3%, < 4676000, -117800>,

3%, < 4676000,
3%, < 5317800,
4%)
XB)

4%, < 5200000,
4%, < 5200000,
4%, < 4676000,
4%, < 4676000,
4%, < 5200000,
5%)
XB)

< 5317800,
< 5317800,
< 4676000,
< 4676000,
< 5317800,
6%)

5%,
5%,
5%,
Ss,
5%,

6%, < 5040000,
6%, < 5160000,
6%, < 5160000,
6%, < 5040000,
6%, < 5040000,
%)

7%, < 5040000,
7%, < 5160000,
7%, < 5160000,
7%, < 5040000,
7%, < 5040000,

IS_A }cif.symbol_call,
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296000>,
296000>,

2960005,
0>,
0>,

296000>,

296000>,

296000>,

-117800>,
-117800>,

2960005,
296000>,

296000>,
296000>,
280000>,
280000>,
296000>,

40000>,
40000>,
160000,
160000>,
40000>,

a8)



ATTR (8%, symbol_number, 2)

VERTEY ( 8%, < 4680000, 0>, 1)
ORIENT ( 8%, 0.00, 0.00, 0.00)

IS_A (cif.wire, 9%)

LAYER ( 9%, XC)

WIDTH ( 9%, 15000)

VERTEX {( 9%, < 4760000, 296000>, 1)
VERTEX ( 9%, < 4760000, 280000>, 2)
IS_A (cif.wire, 10%)

LAYER ( 10%, XC)

WIDTH ( 10%, 15000)

VERTEX ( 10%, < 5100000, 280000>, 1)
VERTEX ( 10%, < 5100000, 240000>, 2)
VERTEX ( 10%, < 5000000, 240000>, 3)
VERTEX ( 10%, < 5000000, 80000>, 4)
VERTEX ( 10%, < 4960000, 80000>, 9)
IS_A (cif.wire, 1ll%)

LAYER ( 1ll%, XC)

WIDTH ( 1l1%, 15000)

VERTEX ( 1l1%, < 5100000, 40000>, 1)
VERTEX ( 1ll%, < 5100000, 0>, 2)
VERTEY ( 1ll%, < 4760000, 0>, 3)
VERTEX ( 1lls, < 4760000, 40000>, 4)
IS_A (cif.polygon, 12%)

LAYER ( 12%, XD)

VERTEX ( 12%, < S317800, 296000>, 1)
VERTEX ( 12%, < 5317800, 202500>, 2)
VERTEX ( 12%, < 4797500, 202500>, 3)
VERTEX ( 12%, < 4797500, 117500>, 4)
VERTEX ( 12%, < 4882500, 117500>, S)
VERTEX ( 12%, < 4882500, 202500>, 6)
VERTEX ( 12%, < 5317800, 202500>, 7)
VERTEX ( 12%, < 5317800, -117800>, 8)
VERTEX {( 12%, < 4676000, -117800>, 9)
VERTEX ( 12%, < 4676000, 296000>, 10)
VERTEX ( 12%, < 5317800, 296000>, 1l1)
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IS_A (cif.polygon, 13%)
LAYER ( 13%, XE)

VERTEX ( 13%, < 4797500,
VERTEX ( 13%, < 4722500,
VERTEX ( 13%, < 4722500,
VERTEX { 13%, < 4797500,

VERTEX ( 13%, < 4797500,
IS_A (cif.polygon, 14%)
LAYER ( 148, XE)

VERTEX { 4%, < 4957500,
VERTEX ( 148, < 4882500,
VERTEX ( 148, < 4882500,
VERTEX ( 14%, < 4957500,
VERTEX ( 14%, < 4957500,
IS_A (cif.polygon, 15%)
LAYER ( 15%, XE)

VERTEX { 15%, < 5157500,
VERTEX { 15%, < 5042500,
VERTEX ( 15%, < 5042500,
VERTEX ( 15%, < 5157500,
VERTEX ( 15%, < 5157500,
IS_A (cif.polygon, 16%)
LAYER ( 16%, XE)

VERTEX ( 16%, < 5157500,
VERTEX ( 16%, < 5157500,
VERTEX ( 16%, < 5042500,
VERTEX ( 16%, < 5042500,
VERTEX ( 16%, < 5157500,
IS_A (cif.polygon, 17%)
LAYER ( 17%, XE)

VERTEX ( 17%, < 4797500,
VERTEX ( 17%, < 4722500,
VERTEX ( 17%, < 4722500,
VERTEX ( 17%, < 4797500,
VERTEX ( 17%, < 4797500,

IS_A (cif.polygon, 1B%)
LAYER ( 18%, XE)

VERTEX ( 18%,
VERTEX ( 18%,
VERTEX { 18%,
VERTEX ( 18%,
VERTEX ( 18%,

4957500,
4882500,
4882500,
4957500,
4957500,

AANANAN

229

11750G>,
117500>,
42500>,
42500>,
1175005,

117500>,
1175005,
42500>,

42500>,
117500>,

1575005,
157500>,
42500>,
42500>,
157500>,

296000>,
282500>,
282500>,
296000>,
296000>,

277500,
277500>,
202500>,
202500>,
2775005,

277500,
2775005,
202500>,
202500>,
277500>,



IS_A (cif.symbol, 19%)
ATTR (19%, symbol_number,
IS_A (cif.polygon, 20%)
LAYER ( 20%, XC) .
VERTEX ( 20%, < 200000,
VERTEX ( 20%, < 280000,
VERTEX ( 20%, < 280000,
VERTEX ( 20%, < 200000,
VERTEX ( 20%, < 200000,
IS_A (cif.polygon, 21%)
LAYER ( 21%, XC)

VERTEX ( 213, < 40000,
VERTEX ( 213, < 120000,
VERTEX ( 21%, < 120000,
VERTEX ( 218, < 87500,
VERTEX ( 218, < 87500,
VERTEX ( 21%, < 137500,
VERTEX ( 21%, < 137500,
VERTEX ( 21%, < 147500,
VERTEX ( 213, < 147500,
VERTEX ( 21%, < 137500,
VERTEX ( 213, < 137500,
VERTEX ( 218, < 72500,
VERTEX ( 218, < 72500,
VERTEX ( 218, < 40000,
VERTEX ( 21%, < 40000,

IS_A (cif.polygon, 22%)
LAYER ( 22%, XC)

VERTEX ( 22%, < 200000,
VERTEX ( 22%, < 280000,
VERTEX ( 22%, < 280000,
VERTEX ( 22%, < 247500,
VERTEX ( 22%, < 247500,
VERTEX ( 22%, < 182500,
VERTEX ( 22%, < 182500,
VERTEX ( 22%, < 172500,
VERTEX ( 22%, < 172500,
VERTEX ( 22%, < 182500,
VERTEX { 22%, < 182500,
VERTEX ( 22%, < 232500,
VERTEX ( 22%, < 232500,
VERTEX ( 22%, < 200000,
VERTEX ( 22%, < 2000040,

230

2)

280000>,
280000>,
200000>,
200000>,
2800005,

40000>,

40000>,
120000>,
120000>,
152500>,
152500>,
135000>,
135000>,
185000>,
185000>,
167500>,
167500>,
120000>,
120000>,

40000>,

40000>,

4000G>,
120000>,
120000>,
167500>,
167500>,
185000>,
185000>,
135000>,
135000>,
152500>,
152500>,
120000>,
120000>,

40000>,

1)
2)
3)
4)
5)

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)



IS_A (cif.polygon, 23%)
LAYER ( 23%, XF)

VERTEX ( 23%, < 132500,
VERTEX ( 23%, < 155000,
VERTEX ( 23%, < 155000,
VERTEX ( 23%, < 132500,
VERTEX ( 23%, < 132500,
IS_A (cif.polygon, 24%)
LAYER ( 24%, XF)

VERTEX ( 24%, < 165000,
VERTEX ( 24%, < 187500,
VERTEX ( 24%, < 187500,
VERTEX ( 24%, < 165000,
VERTEX ( 24%, < 165000,
IS_A (cif.polygon, 25%}
LAYER ( 25%, XC)

VERTEX ( 25%, < 40000,
VERTEX ( 25%, < 120000,
VERTEX ( 25%, < 120000,
VERTEX ( 25%, < 167500,
VERTEX ( 25%, < 167500,
VERTEX { 25%, < 152500,
VERTEX ( 25%, < 152500,
VERTEX ( 25%, < 120000,
VERTEX ( 25%, < 120000,
VERTEX ( 25%, < 40000,
VERTEX ( 25%, < 40000,
IS_A (cif. polygon, 26%)
LAYER ( 26%, XG)

VERTEX ( 26%, < 135000,
VERTEX ( 26%, < 150000,
VERTEX ( 26%, < 150000,
VERTEX ( 26%, < 135000,
VERTEX ( 26%, < 135000,

IS_A (cif.polygon, 27%)

LAYER ( 27%, XG)

VERTEX ( 27%, < 170000,
VERTEX ( 27%, < 185000,
VERTEX ( 27%, < 185000,
VERTEX ( 27%, < 170000,
VERTEX ( 27%, < 170000,
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130000>,
130000>,
190000>,
190000>,
130000>,

130000>,
130000>,
190000>,
190000>,
1300005,

280000>,
2800005,
235000>,
235000>,
115000>,
115000>,
215000>,
215000>,
200000>,

200000>, 10)
280000>, 11)

132500>,
132500>,
187500>,
187500>,
1325005,

1325005,
132500>,
1875005,
187500>,
132500>,

1)
2)
3)
4)
5)

1)
2)
3)
4)
5)



IS_A (cif.polygon, 28%)
LAYER ( 28%, XH)

VERTEX ( 28%, < 140000,
VERTEX ( 28%, < 145000,
VERTEX ( 28%, < 145000,
VERTEX ( 28%, < 140000,
VERTEX ( 28%, < 140000,
IS_A (cif.polygon, 29%)

LAYER ( 29%, XH)

VERTEX ( 29%, < 175000,
VERTEX ( 29%, < 180000,
VERTEX ( 29%, < 180000,
VERTEX ( 29%, < 175000,
VERTEX ( 29%, < 175000,

IS_A (cif.polygon, 30%)}
LAYER ( 30%, XI)

VERTEX ( 30%, < 117500,
VERTEX ( 30%, < 202500,
VERTEX ( 30%, < 202500,
VERTEX { 30%, < 117500,
VERTEX { 30%, < 117500,
IS_A (cif.polygon, 31%)
LAYER ( 31%, XH)
VERTEX ( 31t., <
VERTEX ( 31l%, <
VERTEX ( 31%., <
VERTEX ( 31%. < 205000,
VERTEX ( 31%, < 205000,
IS_A (cif.polygon, 33%)

205000,
277500,
277500,

LAYER ( 33%, XG)

VERTEX ( 33%, < 207500,
VERTEX ( 33%, < 275000,
VERTEX ( 33%, < 275000,
VERTEX ( 33%, < 207500,
VERTEX ( 33%, < 207500,
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13756005,
137500>,
182500>,
182500>,
1375005,

137500>,
137500>,
182500>,
1825Q0>,
137500>,

117500>,
117500>,
202500>,
202500>,
117500>,

202500>,
202500>,
277500>,
277500>,
202500>,

205000>,
205000>,
2750005,
275000>,
205000>,



APPENDIX G
SAMPLE CIF FILE

DS 1;

L XA,

P 5317800 296000 5317800 -117800 4676000 296000

5317800 296000 ;

L XB;

P 5200000 296000 5200000 0 4676000 0 4676000 296000 5200000 296000 ;

P 5317800 296000 5317800 -117800 4676000 -117800 1676000 296000
5317800 296000 ;

L XC;

P 5040000 296000 5160000 296000 5160000 280000 5040000 280000 5040000
296000 ;

P 5040000 40000 5160000 40000 5160000 160000 5040000 160000 5040000
40000 ;

C 2 T 4680000 0 ;

W 15000 4760000 296000 4760000 280000 ;

W 15000 5100000 240000 5000000 240000 5000000 80000

4960000 80000 ;

W 15000 5100000 406000 5100000 0 4760000 0 4760000 40000 ;

L XD ;

P 5317800 296000 5317800 202500 4797500 202500 4797500 117500 4882500
117500 4882500 202500 5317800 202500 5317800 -117800 4676000 -117800
4676000 296000 5317800 296000 ;

LXE;

P 4797500 117500 4722500 117500 4722500 42500 4797500 42500 4797500
117500 ;

P 4957500 117500 488250 117500 45882500 42500 4957500 42500 4957500
117500 ;

P 5157500 157500 5042500 157500 5042500 42500 5157500 42500 5157500
157500 ;

P 5157500 296000 5157500 282500 5042500 282500 5042500 296000 5157500
296000 ;

P 4797500 277500 4722500 277500 4722500 202500 4797500 202500 4797500
277500 ;

P 4957500 277500 4882500 277500 4882500 202500 4957500 202500 4957500
277500 ;

DF;

DS 2;

L XC;

P 200000 280000 280000 280000 280000 200000 200000 200000 200000
280000 ;



L XF ;

P 132500 130000 155000 130000 155000 190000 132500 190000 132500
130000 ;

P 165000 130000 187500 130000 187500 190000 165000 190000 165000
130000 ;

L XC;

P 40000 280000 120000 280000 120000 235000 167500 235000 167500 115000
152500 115000 152500 215000 120000 215000 120000 200000 40000 200000
40000 280000 ;

L XG;

P 135000 132500 150000 132500 150000 187500 135000 187500 135000
132500 ;

P 170000 132500 185000 132500 185000 187500 170000 187500 170000
132500 ;

L XH;

P 140000 137500 145000 137500 145G00 182500 140000 182500 140000
137500 ;

P 175000 137500 180000 137500 180000 182500 175000 182500 175000
137500 ;

L XI;

P 117500 117500 202500 117500 202500 202500 117500 202500 117500
117500 ;

L XH;

P 205000 202500 277500 202500 277500 277500 205000 277500 205000
202500 ;

L XG;

P 207500 205000 275000 205000 275000 275000 207500 275000 207500
205000 ;

DF ;

E;
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APPENDIX H
TDL PREPROCESSOR BNF EXCERPT

"Reprinted with permission by the Calma Company”



DEFINE

Purpose

Introduces and terminates the actual topological description
of the module network.

Syntax
DEFINE <descripto:>l[<desc:iptor>2... <descriptor> ...}

<descriptor>:
{occurrence phrase> -or- <{external output phrase> =-or-
<Boolean phrase> -or- <local no-connect phrase> =-or-
<wired connection>

{occurrence phrase>:
<occurzence name> [ (<output object list>)] = <device type>
{<input connections list>) [(/<delay>/] :

{occurrance namad>:
1 to 12 alphanumeric characters chosen by the user to represent
the occurrence of the device or primitive, or a gquestion mark (?)
which causes the compiler to creata an <occcurrence nama>,

<output object list>:
<explicit object list> -or- <implicit object list>

<explicit object list>:
<object-pin match>, [,<object-pin match>2...,
<output occu::ence}a]l

<implicit object list>:
<output occurrence>, [,<output OCCUrIence>, ...,
<dutput occu:rence>a]1

1. The maximum number of primitives in an <output object
list>, represaented here by “a", cannot exceed the number
of outputs of the <device type> given. When the <device
type> is a TDL primitive, the number of outputs is either
the default (as specified in the TEGAS-5 Simulation
Refarence manual) or the number of outputs acvtributed to
that primitive in the USE statement (g.v.) of the module
Yeing defined, When the {daevice type> references another
module, either by the <module name> or by a <type name>,
the number of outputs eguals the number of <pin names>
given in the OUTPUTS statement of that module.

“d2a
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<object pin-match>:
<output object> = <occurraence output pin> [/<delay>/] -oz-
NC = <occurrence output pind>

<output occurrenced:
[<output object>) [/<delay>/] -or- NC

<occurrence output pind>:
<pin name> of an output of the <{device type> givenl

<output object>:
<signal name> <4or- <external output pin> -or-
<external input pin>

{signal named>:
1 o 12 alphanumeric characters chosen by the user

<external output pind>:
a <pin name> given in the OUTPUTS statement of the module being
defined

{device type>:
<primitive name> -or- <module name> -or- <type name> -or-
<module id>

<primitive name>:
the standard name of a TDL primitive

<module name>:
first segmen: of a <module id> listed in the USE
statement (q.v.)

<{type name>:
name given in the USE statement {q.v.) to a primitive
or module

<input connections list): .
<explicit connections list> -or- <implicit connections list>

2. When the <device type> references another module, the
{occurrence output pin> and <occurrence input pin> are
<pin names> that appeared in the QUTPUTS and INPUTS
statements (qg.v.) of that module. For TDL primitives,
see Appendix B, TDL Primitive Pin Names.

-43-
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<explicit connections list>:

<source~pin match>;[, <source-pin match>j-...
<source=pin match>b]3

<implicit connections list>:
<input source>;(,<input source>,...,<input source>]

<source-~pin match>:
<input source> = <occurrence input pin>

<occurrence input pind>:
<pin name> of an input of the <device type> given2
<input source):
<external input> ~or- <signal name> =-or-
<occurrence output pin reference> -or-
<no-connect> -or- <external output pin>

<external input pin>:
<pin name> given in the INPUTS statement of the module being
defined

<occurrence output pin referenced:
<occurrence name> [<occurrence output pin>l4

<no-connect>:
NC [/<no-connect value>/]

<{no=-connect value>:
l =-or- 0 =or- X =-or- 2

<external output phrase’>:
<external output pind> = {gate type>
(<input connections list>)(/<delay>];

<{gate type>:
either a <primitive name> or <type name> referring to any TDL
primitive or user-defined module that always produces
exactly one output.

3. The maximum number of elements in an <input connections
list>, represented here by "b", cannot exceed the number of
inputs of the <device type> given. The number of inputs is
determined in the same way as the number of outputs.

4. When an <occurrence output pin> is not provided, the
default is the first output pin of the occurrence.

-44-
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<local no-connect éefault):
NC = <no-connect value>;

<Booclean phrasged:
<Boolean signal phrase> -or~ (Boolean names phrase>

{Boolean signal phrase>:
<signal name> [<inverter>] == (sum of products> [/<delay>/}):

<Boolean names phrase>:
<occurrence name> {<output object>) [(<inverter>] ==
<sum of products> [(/<delay>/]

<sum of products>:

<product term>1[+<pzoduct term)z... +<{product term>y]5
<product termd>:

<binary cerm>l['<binaty term>,... *<(binary term>81

<binazy term>:
<input source> [<inverter>]6

<inverter>:
' - a single gquote mark

<delay>:
{delay value list> =-or- <delay name>7

<wired connection>:
¢signal name> = & (<implicit connectiocns list>)8

5. The maximum number of <product terms> in a <Boolean
phrase>, represented here by "y", is directly related to
che number of bits per word on the host machine. For
16-bit machines, yw5. For machines with larger words,
y= (number of bits per word -i) divided by 3 (truncated).

6. Note: A <no-connect> in a <Boolean phrase> is not
allowed.

7. The <{delay value list> is explained with the DELAYS
statement (g.v.). The <delay name> must have previously
been assigned a get of values in the:r DELAYS statement.
8. The ampersand (&) aborts a message warning that a

<device type> was not given. A signal connection i{s made
with the default wired type being inserted (if necessary).
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Comments

The optional <output object list> of an <occurrence phrase> serves
four purposes.|)The <external output pins> or <external input pins>
of the module can ba tied to the <occurrence output pins> {i.e.,
the pins of a device) that drive them.7)The <output object list>
can also be used to assign a <signal name> to the output from a
particular pin of the device occurrence. This <signal name> can,
in turn, be used as an <input source> in any other <descriptor>,

A <signal name> or <external output pin> can alternatively be
matched to an <{occurrence output pin> by a <wired connection)> where
the <input source> i3 an <occurrence output pin refarence>.PIn
addition, the <output object list> can be used to explicitly no-
connect an <occurrence output pin>.Jd)Finally, the user can assign
specific pin delays to output pins with the <output object list>,

If delay values are not specified in an occurrence statement or for
its type, but delay values werae specified on one or more output
pins in the ocgurrence, all signals with specified delays will have
that exact delay value for their delay and all the other signals
for that occurrence statement will have the defaul% value of unit
{one) .

EXAMPLE Y
DELAYS:DELL/1 2/;
USE:  ADM=ANDNAND (2,2) ;
DEFINE: ANDNL (OUT2,0UT2/DELL/) »AND (IN1, IN2};

In the previous example, signals OUT1l and OUT2 have the following
delays:

ourl = /1 11111/
oor2 = /1 11222/

If a delay is placed on the type (with the USE statement) of occur-
reace statement and one or more output pins has delays, the pins
with delays will have their resulting delay egual to the sum of the
pin delay and the occurrence delay (the type delay if the occzsur-
rence delay was not specified). All output pins without specific
assigned delays will take on the value of the occurrence statement
delay {(the type delay if the occurzence delay is not specified.)

EXAMPLE:
USE: ANDN=ANDNAND (2,2)/5 6 7./;
DEFINE: ANDNL (OUT1,0UT2/2 3 3/)=ANDN(INL,IN2)/4 4/;
ANDN2(/3 4 S/,O0UT3)=ANDN(INL,IN2);
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The signals, 0OUT1, OUT2, ANDN2({Ul), and OUT3 have the following
delays:

OUT1=/4 4 4 4 4 4/
ouT2=/6 7 7 6 7 1/
ANDN2(Ol)=/8 12 12 8 10 12/
QUT3I=/5 6 7 5 6 7/

For more information, see the section ou the DELAYS command later
in this chapter,

The <input connections list> is not optional as is the <output
object list>. Though their form is similar, the two lists serve
different functions. Network interconnections (i.e.,, the matching
of the output of one device to the input of another device or
devices) are accomplished solely by means of the <input connection
list>, The <output object list> is provided as a convenience, but
the <input connections list> is essential for <device types> that
have inputs.

Note that both lists have two forms; explicit and implicit. In the
explicit form, each match is made by giving the <occurrence input
(or output) 2ind (a <pin name> wvalid for the <device type>) to
which the assignment is to be made. The matches can be listed in
any order. 1In implicit lists, the occurrence pins are not given.
They are matched according to their relative order for that <device
cype> (first pin to first element in the list, second to second,
etc.) until all elements in the list are matched to a pin.
hdditional commas between primitives in an implicit list cause pins
to be skipped over during the matching; one pin is skipped for each
comma after one obligatory comma. Leftover pins are not matched.

A messajge is issued following module compilation warning when any
pin has been unconnected. The pin will be identified by <occur-
rence name (pin name)>. An unconnected <occurrence input pin> will
be tied to X (undetermined value}. Only the <output object list>
can contain delay assignments. An <input source> cannot be
assigned a delay.

When an <occurrence output pin> {(the output of a device) that is
never matched to a <signal name> is toc be given as an <input
source>, it can be refarenced only by an <occurrence ocutput pin
reference>. AN <occurrence output pin> that is matched at some
point to a <signal nama> can be referenced by either the <signal
name> or the <{occurrence ogtput pin reference>. Forward referenc-
ing is allowed; that is, a <{signal name> can be used as an <input
source> before it has appeared in the <(descriptor> in which it will
ba matched to the <occurrence output »in> or other source that
produces it, Likewise, an <occurrence output pin reference> can
contain an <occurrence name> that has not appeared. If an <occur-
tence output pin> is never referenced, it is left unconnected and a
warning message (qg.v.) is issued.
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The ampersand (&) allows any output to be wired to any source(s) of
input, Using only one <input source> in the <input connections
list> results in simple signal oropagation. If two or more <input
sources> ate given, the default wired gate is inserted. The parz-
ticular wired gate to be used can be specified in the WIRED state-
ment {(q.v.) Note that <no-connect> is not allowed as a <wired
connection>. :

The <no-connect> is used to tie an <input source> to one of four
fixed values: one, zero, X (undetermined), or 2 (high impedance!.
If only the letters 'NC' are used, the default value is assumed.
If a <local no=-connect default> is given, that value 1is used.
Otherwise the global value, which can be set in the OPTIONS state-
ment of the COMPILE command block {g.v.}, is used.

The <Boolean phrase> allows the user to perform limited logical
operations on signals, namely NOT{,), AND(*), and OR(+}. The
result can be given a {signal name> that can be used elsewhere as
an <input source>. In a <named Boolean phrase>, the result can
feed directly into an <external output pin> or <{external input pin>
given as the <output object>. In any case, the function must
always be exprassed as a <sum of products>, which is taken to be
the inverse if an <invertsr> appears before the '==s', Note that
<no-connect> is not allowed in a <Boolean phzase>,

Each <occurrence phrase>, <external output phrase>, or <Boolean
phrase> can optionaily have a propagation <delay> associated with
it. The propagation <delay> determines how long it takes for
changes on the inputs to propagate through to affect the outputs.
There is also a separate DELAYS statement that allows the user to
preset delay values and assign them names. A <delay> in the DEFINE
section has precedence over one set in the DELAYS statement. When
the <device type> refers to another module, a <delay> is
superfluous; a <delay> is associated only with a TDL primitive or a
¢Boolaan phrase>.

-48-
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APPENDIX 1
SOURCE DBIF FOR CALMA—CIF DATA TRANSPORT CASE
CALMA DBIF:

dbid('test.db’ gds,’L4','7/24/84:14:50").
content([fonts(’gdsii: font.tx’ ,1),fonts('gdsii:font.tx",2),
generations(3),

db user umt(0.0000l),db unit meter(1.0e8),
stret{dev],” - -

has(dev i 3),

bdry(i 3,

lyr( i 3,40),dtatyp(i

~3,53250,3000 l)—xy(l 3,53250,- 1950,2;,

xy 3, 46750 1250 3)xy(1” 3 46750 3000,4
xy(i 3 53250 3000 5),
bdrys 4),

has(dev,i 4),

lyr(i 4 leta.t {i_4,0),

xy —4,52000 3000,‘) xy(i 4,52000,0,2),

; 4, 46750 0,3),xy(i 4, 467:)0 3000 4

xy(i ~4,52000,3000,5),

bdry(i_ 6),

has(dev,i 6),

lyr(i_6,10),dtatyp(i

xy(i ~6,50500,3000, 1 y 6,51750,3000,2;,

.\'y 6 51750 27 )0 3 xy 6,60500,2750,4
xy(i ~6.50500.3000.5),

aref(i__ 7 t18),

has(dev,i 7),

rows(i 7,2),

columns(i__7,3),

xy(i_7, 35U00,0,l;,

xy 7 7,46000,0,2

xy(i~ 7,35000,3000,3),

sref(1_ 8 t18),

has(dev,i 8),

xy(i 8 46'750 0,1),

angle{i_8,0. 0)

path(i 9),

has(dev,i 9),

lyr(i 9 IU) dtatyp( _9,0),

width{i

xy(i 9'7500 ,3000,1),xy(i_9,47500,2750,2),

path(i__
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has{dev,i 10),
lyr(i 10,10), dtatyp(l 10,0),
width(i_ 10,150),

xy(i_10,51000,2750,1 ,xy{ 10,51000,2500,2),
Xy i_ 10,50000,2500,3),xy(i ~ 10,50000,750,4),
xy(i ~ 10,49500,750,5),

path{i__11),
has(dev,i 11),
lyr(i  11,10), dtatyp(l 11,0),
width{i 11,150),
xyg 11_51000 500,1),xy(i_ 11,51000,0,2),
xy(i ~ 11,47500,0,3) xy(i  I11,47500,500,4),
bdrﬂ’i 1..),

as(dev i 12),
lyr(i__12,8), dtatyp(l 12,0),
xy(1 ~12,53250,3000,1},xy i __12,53250,2000,2),
xy 12,48000 2000,3),xy l 12,48000,1250,4 ,
xy(i _12,48750,1250,5),xy(i _ 12,48750,2000,6),
xy " 12,53250,2000, 7 Xxy(i— 12,53250,-1250,8),
ky 12, 46750 1250 ,9) xy(l 12,46750,3000,10),

xy(i ~12.53250,3000,11},
bdry(i 13),
has(dev,i i3),
lyr(i__ 13,T1),dtatyp(i 13,0),
xy(i ~13,48000,1250,1Txy(i_ 13,47250,1250,2),
xy} 13.47250,500,3),xy(i_~13,48000,500,4),
xy(1 13,48000,1250 5),
aref(1_ 14 t18)
has(dev,i 14),
rows(i 14,2),
columns{i 14,2),
xy(i 14,46000,3000,1
xy(i ~ 14,53250,3000,2
xy(i ~ 14,46000,8000,3
angle(i 14,90. 0),
mag(i 14, 0. 5),
bdry(i 15)
has(dev,i 15),
lyr(1_ 15,11}, dtatyp(l 15,0),
xy(i ~15,51500,1500,17xy(i_15,50500,1500,2),
xy 15 50500 500 3) xy(i__ 15, 51500 000 4),
xy(i ~15,51500,1500,5),
bdry(i 16)
has(dev,i 16),
lyr(:_16,11), dtatyp(l 16,0),

1

xy(1 —16,51500,3000,1 Xy(l__16,51500,2750,2),
xy(i_16,50500,2750,3),xy(i__ 16,50500,3000,4),
xy(i_ 16, 51500 3000 ),

bdry(i_ 17),

has(dev,i 17),
lyr(i_ 17,11), dtatyp(' 17,0),
xy(i T17,48000,2750,1T,xy(i__ 17,47250,2750,2),
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xy§ 17,47250,2000, 3; xy(i_17,48000,2000,4),
xy(1 17 48000,2750,5

bdry(i 18)

has(dev,i 18),

lyr(i 18,11),dtatyp(i 18,0),

Xy i _18,49500,2750,1 ,xy}i_18,48750,2750,2 ,
xy(i_18,48750,2000,3),xy{i__18,49500,2000,4),
xy(i ™~ 18.49500,2750.5),

strct t18),

bdry(i 20),

has(t18,i 20},

lyr(i_ 20,10),dtatyp(i__20,0),

Xy l ~20,2000,2800,1), } 20,2800,2800,2),
xy(i ~20,2800,2000,3),xy(i ~20,2000,2000,4),
xy(i  20,2000,2800,5),

bdry(i 23)

has(t18,i 23),

lyr(1  23,2),dtatyp(i 23,0),

xyg —23,1300,1300, lijxy}' 23,1600, 1300, 2;,

xy(1 23 1600 1900,3),xy(i 23 1300 19004
xy(i 23,1300,1300,5

bdry(i 24)

has{t18i 24),

lyr(1 242),dtatyp(i 24,0),

xy(i ~24,1700,1300, 1{ y i_24,1900,1300,2;,
xy(i 24, 1000,1900,3),xy(i ~24,1700,1900,4),
xyfi_24 1700 1300,5 , -

bdryi  25),

has(t181  25),

lyr(i 25,10),dtatyp(i 25,0},

xy(i 25,400,2800,1),Xy(i_ 25,1200,2800,2),
xy} 25,1200,2500,3),xy(i”_25,1700,2500,4),
xy(i~ 25,1700, 1200 9),xy(i 25,1500,1200,6 ,
xyf 25,1500,2200,7),xy(i  25,1200,2200,8),

¥

xy(1 25 1200,-000 0),xy(i__ ~25,400,2000 10),
xy(i~ 25,400,2800,11),

bdry(i 26),

has(t181 26),

lyr(i__26,4),dtatyp(i__26,0),

xy(i ~26,1400,1300,1T;xy(i 26,1500,1300,2;,
xy(i ~26,1500,1900,3),xy(i ~26,1400,1900,4),
xy(i~ 26,1400,1300,5), -

text(l 32)

has(tI3,i

lyr(i__32 16) vert pres(i_ 32,middle),

. horz™ pres(l 32,center),

mag(1  32,0.1),

xy(i 32,1400,2475,1),

string(i__ 32 "T18")

angle(1 ~ 32,0.0),

dummy]).
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APPENDIX J
RULES FOR THE CALMA—CIF FORWARD TRANSPORT TEST CASE

Rules for Translating CALMA Data into Generic Data (CALMA Input Rules).

/* 1*/ macro__def(M}-strct(M).

/* 2 */ scale__(S):-db__unit_meter{S).

/* 3 */ polygon _ (P):-bdry(P).

/* 4 */ polygon _ (P):-box(P).

/* 5 */ wire__(W):-path(W).

[* 6 */ text__(T):-text(T).

/* 7 */ layer _(S,L):-lyr(S,L).

/* 8 */ width__(S,L):-width(S,L).

J* 9 */ text__(S,L)-text(S,L).

[* 10 */ vertex _(S,X,Y,1):-xy(S, X, Y I),\+aref(S, _).

/* 11 */ tfont_ (T roman):-font_no(T,1}.

J* 12 */ tfont _ (T italick-font__no(T,2).

J* 13 ¥/ v _just(S,N):-vert _pres(S,N).

J* 14 */ h_just(S,N):--horz__pres{S,N).

/¥ 15 %/ textval _(X,Y)-string(X,Y).

* 16 */ magnif _(S,M):-mag(S,M).

[* 17 */ orient _(S,Y,0.0,Z):-reflection(S},Y is 180.0,angle(S,Z),\+aref(S,_ ).

/* 18 */ orient _(5,Y,0.0,Z):- \+reflection(S},Y is 0.0,angle(S,2},\+aref(S, _).

/* 19 */ macro_ call(M,Name):-sref{M,Name).

/* 20 */ macro_ call(M,Name):-aref(N,Name),rows(N,RM),columns{N,CM),
row _gen(N,RM,CM),fail.

/* 21 */ macro__call(M,Name):-retract(current _re(N,R,C)),aref(N,Name),name{N,NL),
name(C,CL),name(R,RL),
append(NL,"”_ _ ",N1),append(N1,RL,N2},
append(N2," _ _",N3),append(N3,CL,NM),name(M,NM),
xy _asst(M,R,C,N),has _asst(M,N),mag__ asst(M,N).

[* 22 */ row_gen(N,1,C):-=C>0,rc_gen(N,1,C).

/* 23 */ row _gen(N,1,C):-I>1,C>0,rc_gen(N,I,C),J is I-1,row _gen(N,J,C).

/* 24 */ rc_gen(N I,1):-I>0,asserta(current _rc(N,I,1)).

/* 25 */ re__gen{N,],C)-1>0,C> 1,asserta(current _rc(N,1,C)),J is C-1,rc_gen(N,1J).

/* 26 */ has_ (X,Y):-has(X,Y),\+node(Y),\+aref(Y,_).

/* 27 */ keep(dtatyp(X,Y)):-dtatyp(X,Y).

/* 28 */ keep(boxtype(X,Y)):-boxtype(X,Y).
/* 29 */ keep(pathtype(X,Y)):-pathtype(X,Y).
/* 30 */ keep(nodetype(X,Y)):-nodetype(X,Y).
[* 31 */ keep(texttype(X,Y)):--texttype(X,Y).
/* 32 */ keep(fonts(F,N)):-fonts(F,N).

/* 33 */ keep(generations{G)):-generations(G).
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[* 34 */ keep(db _user_unit(U)):-db__user__ unit(U).
/* 35 */ keep{aref(N,Name)):-aref{N,Name).

/* 36 */ keep(node(N)):-node(N).

/* 37 */ keep(propval(S,P,V)}):-propval(S,P,V).

/* 38 */ keep(rows(X,R}):-rows(X,R).

/* 39 */ keep(columns(X,R)}:-columns(X,R).

/* 40 */ keep(has__(X,Y))-has(X,Y),node(Y).

[* 41 */ keep(xy(S,X,Y,I)):-aref(S, _ ).xy(S,X,Y.I).

/* 42 */ xeep(angle(M,A)}:-aref(M, _ ),angle(M,A).

/* 43 */ keep(reflection{M)):-aref(M, _ ) reflection(M).

J* 44 */ xy _ asst(M,R,C,N):-rows(N,RM),columns(N,CM),xy(N,X1,Y1,1),xy(N,X2,Y2,2),
xy(N,X3,Y3,3), MY is R¥(Y3-Y1)/RMMX is C*{X2-X1)/CM,
xy _asst2(M,X1,Y1,MX,MY,NJ}.
[* 45 *[ xy _asst2(M,X1,Y1,MX,MY,N):-angle(N,A),xy _ asst3(M,X1,YI,MX,MY A N).
/* 46 */ xy _asst2(M.X1,Y1,MX,MY ,N}):- \+angle(N, _),reflection(N),
TX is X1+MX, TY is -(Y1-+MY), asserta(xy(M,TX,TY,1)).
/* 47 */ xy _asst2(M,X1,YL,MX, MY N}:- \+angle(N, _),\+reflection{N),
TX is XI1+MX, TY is Y14+MY, asserta(xy(M,TX,TY,1)).
/* 48 *[ xy __asst3(M,X1,Y1L,MX,MY,A,N):-reflection{(N),Cnv is Pi/180,
TX is X1+MX*cos(A*Cnv)+MY*sin(A*Cnv),
TY is -Y1+MX*sin(A*Cnv)}-MY*cos{(A*Cnv), asserta(xy(M,TX,TY,1)).
/* 49 *[ xy _asst3(M,X1,YL,MX,MY,A,N):- \+reflection(N),Cnv is Pi/180,
TX is X1+MX*cos(A*Cnv}-MY*sin(A*Cnv),
TY is Y1+MX*sin{A*Cnv)+MY*cos{A*Cnv), asserta(xy(M,TX,TY, 1)}

/* 50 */ has__asst(M,N):-has(X,N),asserta(has(X,M}).

/* 51 */ has_asst(M,N):- \+has(_,N).

/* 52 */ mag_ asst{M,N):-mag(N,A),asserta(mag(M,A)).

/* 53 */ mag_asst(M,N}:- \+mag(N,__}.

/* 54 */ relative__orient{S):-st _ref(S),angle(S, _),\+abs__angl(S).
[* 55 */ relative__magnif(S)-st _ref(S),mag(S, __)\+abs_ mag(S).
J* 56 */ st__ref(S)-sref(S,_).

[* 57 *[ st_ref(S):-aref(S, ).



Rules for Translating Generéc Data into CIF Data (CIF Output Rules).
J/* < <Zcifout.rul @ 7/25/84:17:.06>> */

asst _uniq(P):-retr(P),asserta(P).

| box(B,L,W,CX,CY)-

| returns all instances of incoming boxes, N, including newly
| generated instances, B, resulting from scaling and asserts

f their rotations.
+

{* 1*/ box(B,L,W,CX,CY):-box__in(N,L __p,W_p,CX_p,CY_p,DX,DY),mac_link(N,Ref},
box__scale(Ref,B,L,W,CX,CY,NL_p,W_p,CX_p,CY_p),
asserta(rotate(B,DX,DY,1)).

/*

| box_ chk(B,L,W,CX,CY,DX.DY)-

| Checks to see if a polygon B is a box. Returns same

| values as for "box__in" plus DX and DY which indicate
] the orientation of the the box off the positive X axis.

/* */ box chk(B L,W,CX,CY,DX,DY):-polygon _ (B),vtx(B,X,Y,1),vtx(B,X,Y,5),
\+vix(B, _,_ 6) vex(B,X2,Y2,2),vix(B,X4,Y4,1),
V1 is X2-X,V2 is Y2-Y,
DX is X4-X,DY is Y4-Y,L1 is DX*DX+DY*DY,
L2 is VI*V1+V2*V2,(DX-V1)*(DX-V1}+(DY-V2)*(DY-V2)=:=
L1+L2,L is sqrt{L1),W is sqrt{L2),CX is (X4+X2)/2.0,
CY is {Y4+Y2)/2.0.

| box_in(B,L,W,CX,CY):-

| 1) returns all instances of incoming boxes with
| name B width W length L

| centerX CX centerY CY

| deltaX DX deltaY DY

| 2) also removes all vertices which make up B.
+

/* 3 */ box__in(B,L,W,CX,CY,DX,DY}:-box_chk(B,L,W,CX,CY,DX,DY),
retr{vertex_ (B, _, _, ).

/‘_"—"—"— _— == e

| box__scale(Ref,B,L,W,CX,CY, N L_p,W_p,CX_p,CY_p)h-

| Returns all scaled instances B for an incoming box

| instance N which is defined in Ref.

/* 4 */ box__scale(Ref,B,L,W,CX,CYNL_p,W_p,CX_p,CY_p)-get_mag(S,Ref,M,Ref2),fail.
/* 5 */ box_scale(Ref,B,L,W,CX,CY NL_p,W_p,CX_p,CY__p)-macro__ inst(Ref,M,Ref2),
M\==1.0,L is M*L _p,



W is M*W_ p, CX is M*CX _p, CY is M*CY _p,
gensym{box__,B),
asserta(item _inst(Ref2,B,N}), asserta(has__ (Ref2,B)),

layer__chk(N,B).
/* 6 */ box__scale(Ref,BL_p,W_p,CX_p,CY_pBL_p,W_p,CX_p,CY_p)
*======= ———————— ——r 14+ 3 — 3 —3
/ ________________ m=mmm————

/* */ call _sym(P,N):-macro cnll(P X).map _ (X,N),asserta(cur__tr__ord(1)),
chk _ mirry(P),chk _ mirrx(P),chk _rot(P),retract(cur __tr__ord(J)),
vtx(P,A,B,1), assertn(tmnsl(? ABJ)),
retract(vertex_ (P, __,__,

/* 8 */ chk _mirry(P):-orient _ (P,A,_,_),A\==0.0,retract(cur _tr__ord(J)),l is J+1,

asserta(cur __tr_ord(1)),asserta{mirrory(P,J)).
/* 9 */ chk _mirry(P):- \+orient__(P,A, _, _
/* 10 */ chk _mirry(P):-orient _(P,0,_,_).

/* 11 */ chk _mirrx(P):-orient _ (P, _,A,_),A\==0.0,retract(cur_tr__ord(J)),l is J+1,/* 1

asserta(cur__tr __ord(I)),asserta(mirrorx(P,J)).
[* 12 */ chk _mirrx(P):- \+orient _(P, __ A, _
[* 13 */ chk _mirrx(P):-orient __(P,__,0, ).

[* 14 */ chk __rot(P)--orient _(P,_,_,A),A\====0.0,retract(cur _tr__ord(J)).l is J-Fl,/* 1

asserta(cur __tr__ord{[)),CS is cos(A),SN is sin(A),
asserta(rotate(P,CS,SN,J)).

[* 15 */ chk _rot(P):- \+orient_(P, _,_,A).

/* 16 */ chk _rot(P):-orient__(P, _, ,0}.

[* 17 */ def _sym(N}):-macro__def(S),gensym(’#’,N),asserta(map _(S,N)),
asserta(scale{N,1,1)).

/* 18 */ ﬂash(F D,CX,CY):-flash _in(N,D_ p,CX_p,CY_ p), mac_link(N,Ref),
fl _scale(Ref,F,.D,CX,CY,ND_p,CX_p,CY_p)

/*==============================

=== m=memneama= _=___—‘—-__.===:=======‘/

/* 19 */ flash _in(F,D,CX,CY):-flsh _ chk(F,D,CX,CY),retr(vertex_(F, _,_,_)).
*=——= 3 33— 15 43—

+==============================‘

/* 20 */ fl_scale(Ref,F,D,CX,CY,N,D_p,CX_p,CY_ p):-get _mag(S,Ref,M,Rel2) M\==

D is M*D__p,

CX is M*CX _p, CY is M*CY _p, gensym(Rash __ ),
asserta(item __inst(Ref2,F,N)), asserta(has__(Ref2,F)),
layer _chk(N,F).
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/* 21 */ A _scale(Ref,F,.D _p,CX_p,CY_p F.D_p,CX_p,CY_p).

*

+======= —_—=== ——1— ————t—t———— 5

/* 22 */ fish _chk(F,D,CX,CY):-polygen _ (F),vtx(F,X,Y,1),vtx(F,X,Y,9),\+vtx(F, _,_,10),
vix(F . X2,Y2,2),vtx(F,X3,Y3,3) vtx(F X4,Y 4,4),vtx(F,X5,Y5,5),
vtx(F.X6,Y6,6)vtx(F,X7,Y7,7),vtx(F,X8,Y8,8),
CX is (X+X5)/2.0,CY is (Y+Y5)/2.0,
CX=:=(X2+X6)/2.0,CY=:=(Y2+YG6)/2.0,
CX==(X3+X7)/3.0,CY==(Y3+Y7)/3.0,
CX=:=(X4-+X8)/4.0,CY=:=(Y4+Y8)/4.0,
L1 is (X8-X)*(X8-X)+{Y8-Y)*(Y8-Y),
L2 is (X2-X)*(X2-X)+{Y2-Y)*(Y2-Y)L1=:=L2,
L3 is (X3-X2)*(X3-X2)+(Y3-Y2)*(Y¥3-Y2),L2=:=L3,
L4 is (X4-X3)*(X4-X3)+(Y4-Y3)*(Y4-Y3) L3=:=L4,
D is sqrt((X8-X4)*(X8-X4)+{Y8-Y4)*(Y8-Y4)).

| g_m(S,Prev,Curr,New):

| Determines New magnitude based upon whether current
| magnitude is relative or absolute and upon the

f previous maginitude in the hierarchy.

/* 23 */ g_m(S,Prev,Curr,New):-relative_magnif(S), magnif_(S,Curr), New is Curr*Prev.
/* 24 */ g _m(S,Prev,Curr,Curr).- \+relative__magnif(S), magnif _(S,Curr).
/* 25 %/ g _m(S,Prev,1.0,Prev})- \-+magnil _(S,_).

| get_mag(Call,Defs,M,Inst):-

i For a given structure definition, Defn, returns all calls,
| Call, to Defn, their magnitudes, M, and new instance

[ names, 1.

/* 26 */ get__mag(Call,Defn,M,Inst):-macro__cali(Cali,Defn),mac__link(Call,Up _ defn),
get_mag(Up__call,Up__defn,Mp,Up__inst),
g__m(Call,Mp,Mc,M),new__inst(Defn,M,Inst),
new __call{Call,New __call,M,Inst),
mhas(Call, New _ call, Defn, Up _defn).

/* 27 */ get__mag(top,Defn,1.0,Defn):- \+macro__call(_,Defn).

/*=========== ——————— = ]
e e e e e e e e o e o F
/* 28 */ has(X,Y):-has__ (A,Y),map__(A,X),\+text_(Y). /
/'::=============================
$== __..._=._._.._-=====:==“_:=___._...=___._.='/

/* 29 */ keep(scale__{S)):-scale__(S).

/* 30 */ keep(macro_ inst(X,Y,Z)):-macro__inst(X,Y,2).
/* 31 */ keep(item __inst(X,Y,Z)):-item _inst{X,Y,Z).

/* 32 *[ keep(ncall(X,Y)):-ncall(X,Y).

=
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/* 33 */ keep(text__(T)):-text __(T).

'/* 34 */ keep(textval _(T,S)):-textval__(T,S).

/* 35 */ keep(h _just(T,S)}:-h _ just(T,S).

/* 36 */ keep(v _ just(T,S)):=v _ just(T,S).

/* 37 */ keep(tfont_ (T,S)):-tfont__(T,S).

/* 38 */ keep(magnif _(S,M)):--magnif _(S,M).

/* 39 */ keep(orient _(T,A,B,C))-orient _(T,A,B,C),text _(T).
/* 40 */ keep(relative_magnif(S)):-relative__ magnif(S).

/* 41 *[ keep(relative _oricnt(S)):-relative _orient(S).

[* 42 */ keep(has_(X,Y))-has_ (X,Y),text __(Y).

/* 43 */ keep(layer _(T,X)):-layer _ (T, X),text_ (T}).

[* 44 *[ keep(vertex _(S,A,B,I)):-vertex_ (S,A,B,I),text __(S).
/* 45 */ keep(map(X,Y)):-map__(X,Y).

+ == = oo == ==='/
/* 46 */ layer(S,X):-layer _(S,1),\+text _(S),X=nd.

[* 47 */ layer(S,X)--layer _(S,2),\+text _(S),X=np.

/* 48 */ layer(S,X):-layer _(S,3),\+text _(S),X=nm.

[* 49 */ layer(S,X):-layer _(S,N),\+text _(S),N>3,concat(},N,X).

[* 50 */ layer _chk(Old,New):-layer _(Old L),asserta(layer _ (New,L)).
[* 51 */ layer_ chk{Old,New):- \+layer__(Old,_).

| mhas(Call,Call,Defn,Defn):-

| Determines whether the new calling macro is the same as
| the previous calling macro. If so, then a new "has_ " is
I
|

"
asserted between the next upper macro definition and this
new call.

/* 53 */ mhas(Call,Call,Defn,Defn).

/* 54 */ mhas(Call,New__call,Defn,Up _defn):-Call\==New _ callDefa=Up _defn,
mhas2(Up _ defn,Call,New _call),

/* 55 */ mhas(Call,New__cail,Defn,Up _ defn):-Defn\==Up _ defn,Call=New __call,
mhas2(Up __defn,Call,New __call).

/* 56 */ mhas(Call,New _ call,Defn,Up_ defn):-Defn\==Up _ defn,Call\s==New __call,
mhas2(Up __defn,Call,New _ call).

/* 57 */ mhas2(Up,__defn,Call,Call):-asst _uniq(has_ (Up_defn,Cali)).
/* 58 */ mhas2(Up _ defn,Call,New __call):-Call\===New _ call,
asst__uniq(has__ (Up_defn,New __call)),
retr(has__(Up__defn,Call)),
asst _uniq(keep(has_(Up _defn,Call})).
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|/ new __call{Old _call,New __call,M,Inst):-

I Determines whether a new macro call needs to be asserted
| or whether one already exists for the Old _call with

| magnitude M, calling Inst, the newly scaled instance.

/* 59 */ new_call(Old _ call,New _ call,M,Inst):- ncall{Old _ call, New__call),
macro_call(New __call,Inst).

/* 60 */ new__call(Old__call,New _ call,M,Inst):- \+ncall(Old _ call, _), M\==1,
gensym(mcall__,New__call),asserta(macro__call{New__ call,Inst}),
vertex _ (Old _call,X,Y,1),asserta(vertex__(New__call,X,Y,1)),
orient __chk(Old _call,New__call),
asserta{ncall{Old __call,New __call)),
retract(macro__call(Old _ call,Ol)),
asserta(keep(macro__call(Old _ call,Ol))).

/* 61 */ new_call(Old __call,Old _ call,1.0,_).

| new_inst(Defn, M, Inst):-

| If the magnitude, M, is not equal to 1, then new__inst
| determines if a macro instance for Defn of maginitude
| M already exists. If not then one is created.

/* 62 */ new_inst(Defn, M, Inst)-M\==1,macro_ inst(Defn M,Inst),
macro__call{New __call,Inst).

[* 63 */ new_inst(Defn, M, lnst):-M\===1,\+macro_inst(Defn.M,__),
gensym(minst__,Inst) asserta(macro__def{Inst)),
asserta{macro _inst(Defn,M,Inst)).

[* 64 */ new_inst(Defn, 1.0, Defn).

J* 65 */ orient _ chk(Old _call,New __ call):-orient _(Old _ call,A,B,C),
asserta(orient __(New __call,A,B,C)).
J* 66 */ orient _ chk(Old __call,New __call):- \+orient _ (Old _ call,A,B,C).

/* 67 */ polygon(P):-poly _ map(P,R).

/* 68 */ poly _map(P,R):-polygon _ (R),\+box _chk(R, _,_,_,_,_,_)\+fish_chk(R,_,_, )

asserta(good _ poly(R)), fail.

/* 69 */ poly _ map(P,R):-good __poly(R),mac__link(R,Ref),get _mag(S,Ref,M,Ref2),fail.

/* 70 */ poly _map(P,R):-good _poly(R),mac__link(R,Ref),macro_inst(Ref,M,Ref2),
gensym(poly __,P),asserta(item _inst{Ref2,P,R)),
asserta(has__(Ref2,P)) layer __chk(R,P).

/* 71 */ poly _map(R,R):-good __poly(R).

]




vx__scale(Ref,P,X,Y,NX_p,Y_p).
/* 73 */ vertex _in(P,X,Y,I):-vtx(P,X,Y,]).
[* 74 */ vx_scale(Ref,P,X,Y,N,X_p,Y__p)-macro_inst(Ref,M,Inst),item _ inst(Inst,P,N),
Xis M¥X_p,Y is M*Y_p.
[* 75 *[ vx_scale(Rel,N,X,Y,N,X,Y).
J* 76 */ vix(S,X,Y,I):-scale _{V),vertex__(S,A,B,I),\+text_ (S},
Xis A*1.0e8/V,Y is B*1.0e8/V.
J* 77 *] vix(S,X,Y,I):- \+scale__(V),vertex _(S,A,B,I),\+text _ (S),
X is A*1.0e8)Y is B*1.0e8.

/*==============================

[* 78 */ wire(W,Wid):-wire__in(N,Wid _p), mac__ link(N,Ref), wr__scale(Ref,W,Wid,N,Wid _p)

/*==============================

J* 79 */ wire_in(W,Wid):-wire__(W),width __ (W, Wid).
*—=================='—-'—=_'———=—'—'=

{+'=============== E— —_—== == *

/* 80 */ wr__scale(Ref,W,Wid,N,Wid __p):-get __mag(S,Ref,M,Ref2), M\==1.0,
Wid is M*Wid _p,
gensym(wire _,W), asserta(item_inst(Ref2,W,N])),
asserta(has__ (Ref2,W)),layer__chk(N,W).

/* 81 */ wr_scale(Ref,W,Wid _ p,W,Wid _ p).
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APPENDIX K
RULES FOR THE CALMA—CIF REVERSE TRANSPORT TEST CASE

Rules for Translating CIF Data into Generic Data (CIF Input Rules).

/* < <cifin.rul @ 8/7/84:11:20>> ¥/

has__(D,I):-has(N,I),\+macro_inst(_,__,N),\+item _inst(_,1,_),
\+ncall(_,I),map(D,N).
has_(D,I):-keep(has_(D,I}).

layer (S, X):-layer(S,N),\+item _inst(__,S, _),ly2(S,N,X).
layer _ (S,X):-keep(layer _(S,X)).

ly2(S,nd,1).

ly2(S,np,2).

ly2(S,nm,3).
ly2(S,N,X):-name(N,NL),append("l",XL,NL},name(X,XL),X>3.

macro__def(S)-def__sym(N),map(S,N),\-+macro__inst(__,_,S).
macro__def(N):-def _sym(N),\+map({__,N),\+macro__inst(_,_,N).

| Magnification and Orientation

magnif __(S,M):-keep(magnif_(S,M}).
relative__magnif(S):-keep{relative_ magnif(S)).
relative __orient(S):-keep(relative _ orient(S)).
orient_ (T,A,B,C):-keep(orient (T ,A,B,C)).

| POLYGONS
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polygon _ (P):-polygon(P),\+item _inst(_,P,_).

polygon __(P):-box(P,L,W,CX,CY),\+item _inst(_ ,P,_ ),rotate(P,A,B,1), C is
sqrt(A*A+B*B), V1 is (A/C)¥(W/2), V2is (B/C)*(L/2),
V3 is (B/C)*(W/2), V4 is (A/CY*(L/2),
X1is CX-(V4+V3), X2 is CX+V4-V3, X3 is CX+V3+V4, X4 is CX+V3-V4,
Y1is CY4VI-VE, Y2 is CY+VI+V2, Y3 is CY+V2-V1, Y4 is CY-(V1+V2),
asserta(vertex{P,X1,Y1,1)), asserta(vertex(P,X2,Y2,2)),
asserta(vertex(P,X3,Y3,3)), asserta(vertex(P,X4,Y4,4)),
asserta{vertex(P,X1,Y1,5)).

polygon _ (F):-flash(F,D,CX,CY),\+item _inst(__,F,_),SR2 is sqrt(2.0), SR2_3 is
SR2*SR2*SR2, A is D/(2+SR2_ 3}, MA is -A, MD is -D,
asserta{vertex(F,MA ,MD, 1)), asserta(vertex(F,MD ,MA,2)),
asserta({vertex(F,MD,A 3)}, asserta(vertex(IF,MA,D,4)),
asserta(vertex(F,A,D,5)), asserta(vertex{F,D,A,6)),
asserta(vertex(F,D,MA,7))}, asserta{vertex(F,A,MD,8)},
asserta(vertex(F,MA,MD,9)).

*=========================z====
| SCALE

scale__(Z):-keep(scale__(2)).
/‘==============================
| TEXT

text __(T):-keep(text__(T)).

textval __(T,V):--keep(textval _(T,V)).
v _just(T,J):-keep(v _just(T,J}).
h__just(T,J):-keep(h _just(T,J}}.

tm(P,I, T11,T12,T13,
T21,T22,T23,
T31,T32,T33):-transl{P X, Y I}, J is I+1, tm(P,J, T11,T12,T13,T21,T22,
T23,531,532,533), T31 is X*T11+Y*T21+831,
T32 is X*T12+Y*T22+532, T33 is X*T13+Y*T234533.
tm(P,[, T11,T12,T13,
T21,T22,T23,
T31,T32,T33).-mirrorx(P,I), J is I+1, tm(P,J,511,512,513,T21,T22,
T23,T31,T32,T33), T1lis -S11, T12 is -S12, T13 is -513,
tm(P,I,T11,T12,T13,
T21,T22,T23,
T11,T12,T13):-microry(P,I), J is I+1, tm(P,J, T11,T12,T13,521,522,
§23,T31,T32,T33), T21 is -S21, T22 is -522, T23 is -S23.
tm(P,1,T11,T12,T13, :



T21,T22,T23,
T11,T12,T13):-rotate(P,A,B,I), Jis I+1, C is sqrt(A*A+B*B),
tm{P,J,511,512,513,521,522,523,T31,T32,T33),

T11 is (A*S11+B*S21)/C, T12 is (A*S12+B*322)/C,
T13 is (A*S13+B*$23)/C, T21 is (A*S21-B*S11)/C,
T22 is (A*S22+B*S12)/C, T23 is (A*S23+B*513)/C.

tm{P,1,1,0,0,
0,1,0,
0,0,1): \+transi(P, _,_,I),\+mirrorx(P,I),\+mirrory(P,I),
\+rotate(P, _, ).
/*========——=— — — —3—r 3 ——— 11—
I VERTICES

vertex__(S,X,Y I):-vertex(S,A,B,I),\+item _inst(__,S, ),vx2(S,F,G),
X is F*A/G, Y is F*B/G.

vx2(S,F,G):-comptd _scale(S,F,G).

vx2(S,F,G):- \+comptd _scale(S,F,G),has(M,S),scale(M,F1,G),vx3(F1,F),
asserta(comptd _scale(S,F,G)).

vx2(S,F,G}- \+comptd _ scale(S,F,G),has(M,S),\ +scale(M, _,_),vx3(1,Z),
asserta(comptd _scale(S,F,G)).

vx3(l,J):-keep(scale__(Z)),J is Z*I/1.0e8.

vx3(1,J):- \+keep(scale _(__}),J is 1/1.0e8.

vertex _ (52,X,Y,I):-eall_sym(S,M),vtx2(S5,52),tm(S,1,R1,R2,0,R3,R4,0,X,Y,1),
vexfin{S2,R1,R2R4),1 is 1.

vtx2(S,S):- \+neall{ _,S).

vix2(S,52):-neall{S2,5).

vtxfin{3,0,R2,0}:-R2>=0,assertaorient __(S,0,0,90)).

vixfin(5,0,R2,0}-R2<0,asserta(orient __(S,0,0,-90)).

[*Vv*

vixfin($,R1,R2,R1}:-R1==0,A is atan(R2/R1),A===0.0,asserta(orient _ (S,0,0,A)).
vexfin(S,R1,R2,R1):-RI==0,A is atan(R2/R1),A==0.0.

1*v:

vtxfin(S,R1,R2,R4):-R1\==R4,R1\==0,A is atan(R2/R1),
asserta(orient__(S,180,0,A)).

vertex_ (S,X,Y I):-keep(vertex __(S,X,Y.,I)).

* S ———

wire__(W)-wire(W,Wid),\ +item_inst(_,W,_).
width _ (W, Wid):-wire(W,Wid),\+item _inst(_,W,_).




| Macro Calls

macro__call(S,N):-call_sym($,X),\+ncall(_,S),mc2(N,X).
macro __call(S,N):-keep(macro _ call(S,N)).
mc2(N,X):-map(N,X).

mc2(X,X):- \+map{_,X).

itern_inst(X,Y,Z):-keep(item _inst(X,Y,Z}).
ncall(S, T):-keep(ncall(S,T})).
map(X,Y):-keep(map(X,Y)).
macro__inst(X,M,I):-keep(macro__inst(X,M,I}).
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Rules for Translating Generic Data into CALMA Data (CALMA Output Rules).
/* < <gdsout.rul G 8/8/84:12:47>> */

box(Bx):-polygon _ (Bx),vertex__(Bx,X,Y,1),vertex_ (Bx,X,Y,5),\+vertex_ (Bx,_,__,6),
vertex_(Bx,X2,Y2,2),vertex _(Bx,X4,Y4,4),A is X2-X, B is Y2-Y,
Cis X4-X, D is Y4-Y, L1 is C*C+4D*D, L2 is A*A+B*B,
((C-AY*(C-A)+(D-B)*(D-B)) =:= L1+L2.

bdry(B):-polygon __(B),\+box(B).

path(P):-wire__(P).

stret(S):-macro__def(S).

sref(T,N)-macro__call(T,N),name(T,TL),\-+contains(TL," _ _").

aref(S,N):-macro__cali(T,N),name(T,TLB),append(TL," _ _1_ __ 1", TLB),name(T2,TL),
keep(aref{T2,N)),asserta(ar{T2,T,N)) fail.

aref(S,N):-macro__call(T,N),name(T,TL),contains(TL,” _ _"),
\-+ar(_,T,_)retr(has_(_,T)),retr(magnif__(T,_)),
retr(orient __ (T, _,_,__)).fail.

arel(S,N):-retract(ar(S,T,N)),reth(S,T),retm(S,T),reto{S,T).

reth(S,T):-retract(has__(A,T)),asserta(has__(A,S))fail.

reth(S,T).

retm(S, T ):-retract{magnif _(T,A)),asserta(magnif_(S,A)},fail.
retm(S,T).

reto(S,T):-retract(orient _(T,A,B,C}),asserta(orient _{S,A,B,C)),fail.
reto(S,T).

text(T):-text _(T).

node(N):-keep(node(N)).

dtaty p(S ,X):-keep(dtatyp(S,X)).

pathtype(S,X):-keep{pathty pe(S,X)).

nodetype(S,X):-keep(nodetype(S,X)).

texttype(S,X):-keep(texttype(S,X)).

boxty pe(S,X):-keep(boxtype(S,X)).

fonts(F,N):-keep(fonts(F,N)).

generations(G):-keep(gencrations(G)).

db_user__unit(U):-keep(db __user _unit(U)).

db_unit_meter(U):-scale__(U).

xy(8,X,Y I):-vertex _{S,X,Y,I),\+macro__call(S,_).

xy(S,X,Y I):-vertex__(S,X,Y,I),macro__call(S,_),name(S,SL),\+contains(SL," _ _").

xy(S.X,Y I):-vertex_ (M,RX,RY,1),name(M,ML),indexL{ML," ___1_ _1",P},
L is P-1,substrL(ML,SL,1,L),name(8,5L) keep{aref(S, _)),
keep(rows(S,RM)),keep(columns(S,CM)),
name(RM,RML),name(CM,CML),append(SL," _ _ ",Nml),
append(Nm1,RML,Nm2),append(Nm2," ",Nm3),append(Nm3,CML,NmL},
name(Nm,NmL),
vertex_ (Nm,X2,Y2,1),X is RX-(X2-RX)/(CM-1), L is 1,
Y is RY-(Y2-RY)/(RM-1),asserta(xy _{S,X2,Y,2)),
asserta(xy __(S,X,Y2,3)). '

xy(S,X,Y,I)-xy _(S,X,Y,]).

lyr(S,L):-layer _(S,L).

has{X,Y):-has__(X,Y).

width(S, W):-width _ (S,W).

reflections(S):-orient _ (5,180.0, _, ).

abs_mag(S)-macro__ call(S),magnif _(S,_),\+relative_ magnif(S).
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abs__angl(S):-macro__call(S).orient __(S,_,_,_),\-+relative_orient(S).
columns(S,C):-keep(columns(S,C)).
rows(S,R):-keep(rows(S,R)).
font__no(T,1):-tfont(T ,roman).
font__no(T,2):-tfont(T,italic).

vert _pres(S,N}-v _ just(S,N).
horz__pres{S,N}:-h _just(S,N).
string(S,Str)--textval _(S,Str).
mag(S,M):-magnif _(5,M).
angle(S,A):-orient(S, _,_,A).
propval(S,P,V):-keep(propval(S,P,V)).
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APPENDIX L
GENERIC FACTS CREATED FROM SOURCE TDL

node(node__1). node(node_ 2). node(node_3). node(node__4).
node(node_5). node(node__G). node(node_7). node(ncde__8).
node(node_9). node(node__10).node(node__11).node(node __12).
node(node _ 13).node(node _ 14).node(node__15).node(node __16).
node(node _17).node(node __18).node{node__19).node(node _ 20).
net{gb).net(q). net(nand _ _f). net{nond _ _e}.

net{i). net(nand_ _d).net(nznd _ _ c).net{nand __ _b).

net{nand _ _a).net(net__1).  npet{net_2).  nect{net_3).
net(net__4).  net(net_5). nect(net_6). net(net_7).
net(net _8).  net(net_9).

box(devl). box(dev2). box(dev3). box(dev4).
box(dev5). box(dev6). box(dev7). box(g__ _ nand).
box(h __ _nand). box(dev8). box(dev9). box(ext).

box__type(not). box__type(nand). box _type(dig___ 2 __ nand).

box _type(dig_ _3_ _ nand). box_ type{exterior).

net _type(nt_1).
net _type(nt_4).
net_type(nt_7).
net _type(nt__10).
net _type(nt__13).
net __type{nt__16).
node__type(inl).
node _type{in3).

net_type(nt_2}.
net__type(nt_5}.
net__type(nt_8).
net _type(nt__11).
net _type(nt__ 14).
net__type(nt__17).
node __type(outl).
node _type(ogb).

net__type(nt__3).
net__type(nt_6).
net_type(nt_9).
net__type(nt_12).
net__type(nt__15).
net__type(nt__18).
node__type{in2).
node__type{oq).

node__type{pc). node _type{ps). node _type(k).
node__type{j). node_ type{clock). node__dir(out).
node _dir(in).

connected{dev5,net _9,node__19).
connected(devl,net__7,node_8).
connected(dev2,net__5mnode_10).

connected{dev2,net__8,node_8).
connected{devi,net__6,node__10).
connected(dev3,net _4,node__16).
connected{dev4,net__3,node__16). connected(dev8,net _2,node _ 20).
connected{devd,net__1,node_ 20). connected(devl,nand __ _ a,node_ 11).
connected(devl,qb,node__9).  connected(dev2,nand _ _ b,node_11).
connected(dev2,q,node__9). connected(devd,nand __ __c,node__17).
connected(dev3,nand _ _a,node__15). connected(dev3,nand _ _ d,node_18).
connected(dev4,nand _ _d,node__17). connected(dev4,nand _ __b,node__15).
connected(dev4,nand _ _ c,node__18). connected{dev5,i,node_ 20).
connected(dev,nand _ __e,node_14). connected(dev6,nand __ _ c,node_13).
connected(devl,i,node__12).  connected(dev7,nand __ _ f,node_ 14).
connected(dev7,nand _ __d,node_13}. connected{dev7,inode__12).
connected(g__ _nand,q,node__17). connected(g_ __nand,nand _ _e,node __16).
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connected(g__ __nand,gb,node__15). connected(h _ _nand,gb,node__17).
connected(h__ _nand,nand __ _f,node__16). connected(h _ _ nand,q,node__15).
connected{dev8,q,node_19).  connected(dev9,qb,node_19).
connected(ext,net_9,node__5). connccted(ext,net__8,node_5).
connected(ext,net__7,node__5). connccted(ext,net_6,node_4).
connected(ext,net_S,node__3). connected(ext,net__4,node_ 2).
connected(ext,net_3,node__1). connected(ext,net_2,node_7).
connected{ext,net__1,node_G).

has__(nand _ _a,nt_ 18). has_(nand _ _b,nt__17).

has_(nand ___¢,nt__16).

has__(nand _ _d,nt__15). has_ (i,nt__14). has_ (nand _ _e,nt__13).
has_ (nand _ _ f,nt_ 12). has_ {q,nt_11).has__(qb,nt_ 10).

has_(net_1,nt_9). has_(net_2,nt_8). has_(net_3,nt_7).
has__(net_4,nt_6). has_ (net_S5.nt_5). has_(net_6,nt_4).
has_(net_?,nt_ag. has_(net_8nt_2). has_(net_9nt_1).
has_ (not,node__20). has__(node_ 20,0utl}. has__(not,node_19).
has__(node_19,inl1). has_ (nand,node_18). has_ (node__ 18,in3).
has_(nand,node__17). has__(node_ 17,0utl). has__(nand,node_ 16).
has__(node_16,in1).  has_(nand,node _15). has__(node__15,in2).
has_ (dig__ _2__ _ nand,node_ 14). has__(node__14,0utl).

has_ (dig_ _2_ _ nand,node__13). has__(node__13,inl).
has__(dig__ _2__ _nand,node_ 12). has__(node__12,in2).
has_ (dig__ _3____nand,node_11). has__{node__11,0utl).
has_ (dig__ _3_ _nand,node__10). has__(node__10,inl).
has__(dig_ _3_ _nand,node_9). has__(node__9,in2).
has__(dig___3_ _nand,node__8). has__(node_ 8,in3).
has__(exterior,node__7). has__(node__7,0q). has__(exterior,node _G).
has_(node_6,0qb).  has_ (exterior,node_5). has__(node_ 5,clock}.

- has__(exterior,node_4).has__{node__4,j). has__(exterior,node _3).
has__{node_ 3,k). has__{exterior,node__2). has__(node__2,ps).

has__(exterior,node __1).has_(node__1,pc).
has__(devldig__ _3__ _nand). has__(dev2dig____ 3 ___ nand).
has__(dev3,nand). has__(dev4,nand). has__(dev5,not).
has__(dev6,dig__ _2_ __nand). has_(dev7,dig_ _2___ nand).
has_ (g_ _nand,nand).has__(h _ _ nand,nand).has_ (dev8,not).
has__{dev9,not).

has__{node__10,in). has__(node _ 13,in). has__(node _16,in).
has__(node__19,in). has__(node__1l,out). has_(node_ 14,out).
bas_ (node__17,0ut). has__(node__20,0ut). has_ (node_9,in).

has__(node__12,in). has__(node__15,in). has_(node_8,in).
has__ (node_ 18,in). has__(node__ 6,0ut). has__{node__7,0ut).
has_ (node__1,in). has_ (node__2,in). has__{node_ 3,in).
has_ (node__4,in}. has__(node_ 5,in). has__(ext,exterior).
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APPENDIX M
GENERIC FACTS CREATED FROM SOURCE CALMA DATA

polygon _ (i__3).polygon__{i__4).polygon _(i_6).polygon__(i_12). polygon __{i__13).
polygon _(i__15). ~ polygon __(i_16). polygon _(i__17). polygon _(i__18).
polygon _ (i__20). polygon _(i__23). polygon _ (i__24). polygon __(i__25).

polygon _(i__26).
wire_(i__9). wire_(i_10). wire_(i__11).

macro__def(dev). macro__def(t18).

macro__call(i_8,t18). macro_call(i_14__ _1__ _1,t18).
macro__call(i_14__ __1_ _ 2,t18). macro__call{i_14___2__ 1,t18).
macro_call(i_14_ _2_ __2,t18). macro__callli_7__1___ 1,t18).
macro_call{i_7_ _1_ _ 2,t18). macro__call(i_7_ _1_ _ 3,t18).
macro_call{i_7_ _2_ _ 1,t18). macro__call{i_7_ _2_ _ 2,t18).
macro_call(i_7_ _2_ _ 3,t18).

scale _(100000000).
layer _{i__3,40).layer _(i__4,1). layer__(i__6,10).layer_ (i_9,10).

layer__(i__10,10). layer__{i__11,10). layer _(i__12,3).layer_ (i_13,11).
layer__(i__15,11). layer__(i__16,11). layer _(i_17,11). layer __(i__18,11}.
layer __(i__20,10). layer __(i_23,2).layer _{i_24,2).1ayer _(i__25,10).

layer__(i_26,4).layer_ (i__32,16).

vertex__(i_7_ _2_ _ 3,46000,3000,1). vertex_ (i_7___2_ _ 2,42333,3000,1).
vertex_(i_7_ _2_ _ 1,38667,3000,1). vertex_(i_7__1__ 3,46000,1500,1).
vertex__(i_7____1__ _242333,1500,1). vertex__(i_7__ _1___ 1,38667,1500,1).
vertex_(i_14__2__2,41000,10250,1). vertex_(i_14_ _2__ 1,41000,6625,1).
vertex _ (i__14_ _1_ _ 2,43500,10250,1). vertex_ {i_14_ _1_ _1,43500,6625,1).
vertex _ (i__3,53250,3000,1). vertex_ (i_3,53250,-1250,2).  vertex_ (i__3,46750,-1250,3).
vertex _(i_3,46750,3000,4).  vertex_(i_3,53250,3000,5).  vertex_(i_4,52000,3000,1).
vertex __ (i__4,52000,0,2). vertex _ (i__4,46750,0,3). vertex (i__4,46750,3000,4).
vertex_(i_4,52000,3000,5).  vertex_(i_6,50500,3000,1).  vertex__(i_6,51750,3000,2).
vertex_(i__6,51750,2750,3). vertex__(i__6,50500,2750,4).  vertex__(i__6,50500,3000,5).
vertex _(i__8,46750,0,1). vertex_ (i_9,47500,3000,1).  vertex_ (i__9,47500,2750,2).
vertex_(i_10,51000,2750,1).  vertex__(i_10,51000,2500,2).  vertex _(i__10,50000,2500,3).
vertex__(i__10,560000,750,4). vertex__(i__10,49500,750,5).  vertex_ (i__11,51000,500,1).
vertex__(i__11,51000,0,2). vertex _ (i__11,47500,0,3). vertex _ (i__11,47500,500,4).
vertex _(i__12,563250,3000,1). vertex_ (i__12,53250,2000,2). vertex _(i__12,48000,2000,3).
vertex (i 12,48000,1250,4).  vertex__(i_12,48750,1250,5). vertex_ (i_ 12,48750,2000,6).
vertex _(i__12,53250,2000,7). vertex_ (i__12,53250,-1250,8). vertex__(i__12,46750,-1250,9).
vertex__(i_ 12,46750,3000,10). vertex__(i_ 12,53250,3000,11).

vertex__(i__ 13,48000,1250,1).  vertex_(i_ 13,47250,1250,2). vertex_ (i _13,47250,500,3).
vertex __(i__13,48000,500,4). vertex _ (i__13,48000,1250,5). vertex_ (i__15,51500,1500,1).
vertex __(i__15,50500,1500,2). vertex_ (i__15,50500,500,3). vertex _(i__15,51500,500,4).
vertex__(i__15,51500,1500,5).  vertex _(i_ 16,51500,3000,1). vertex_ (i__ 16,51500,2750,2).
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vertex _(i_16,50500,2750,3).
vertex__(i__17,48000,2750,1).
vertex__(i__17,48000,2000,4).
vertex__(i_18,48750,2750,2).
vertex _ (i_18,49500,2750,5).

vertex _(i__20,2800,2000,3).
vertex _(i_ 23,1300,1300,1).
vertex _(i_23,1300,1900,4).
vertex _ (i__24,1900,1300,2).
vertex __(i__24,1700,1300,5).
vertex _(i__25,1200,2500,3).
vertex _(i_25,1500,1200,6).
vertex _(i_ 25,1200,2000,9).
vertex _(i_26,1400,1300,1).
vertex _(i_26,1400,1900,4).
width _(i__9,150).

orient _{i__8,0,0,0).
has__(dev,i_7__2_ _ 3).

has_ (dev,i_7_ _1__ _3).

has_ (dev,i__14_ _2_ _2).
has_(dev,i_14_ _1_ _1).

has_ (dev,i_ 8).has_ (dev,i_9). has_ (dev,i__10).
has__(dev,i__13).
has__(dev,i__16).
has_(t18,i__23).
has_(t18,i__32).
_2,0.5). mognif _(i_14__2
T 2,05). magnif_(i_14_ _1_
magnif__{(i__32,0.1).
relative__orient{i__14). relative__magnif(i_14).
textval __ (i __32,[84,49,56]).
v_just(i_32,middle).

has_(dev,i__12).
has__(dev,i__15).
has__(t18,i _20).

has_ (t18,i_26).
magnif _(i__14_ __2_
magnif _(i_14_ _1__
magnif _{i__14,0.5).
relative__orient(i__8).
text__(i__32).
h__just{i__32,center).

width _(i_10,150).
orient __(i_ 32,0,0,0).

vertex__(i_16,50500,3000,4),
vertex__(i_ 17,47250,2750,2).
vertex_(i_ 17,48000,2750,5).
vertex_(i_18,48750,2000,3).

vertex__{i_ 20,2000,2800,1).
vertex _(i__20,2000,2000,4).
vertex _(i_23,1600,1300,2).
vertex _{i_23,1300,1300,5).
vertex _(i_ 24,1900,1900,3).
vertex _(i_25,400,2800,1).

vertex __(i__25,1700,2500,4).
vertex _{i__25,1500,2200,7).
vertex_(i__ 25,400,2000,10).
vertex _(i__26,1500,1300,2).
vertex _(i_26,1400,1300,5).

has_(dev,i_7__2___2).
has__(dev,i_7_ _1__ _2}

has_(dev,i_14__2_ _1).

vertex__(i__16,51500,3000,5).
vertex__(i_17,47250,2000,3).
vertex _(i_ 18,49500,2750,1),
vertex__ (i__18,49500,2000,4).
vertex__(i__20,2800,2800,2).
vertex _(i__20,2000,2800,5).
vertex__(i__23,1600,1900,3).
vertex__{i__24,1700,1300,1}.
vertex _ (i_24,1700,1900,4).
vertex_ {i__25,1200,2800,2).
vertex_ (i__25,1700,1200,5).
vertex__(i_ 25,1200,2200,8).
vertex__(i_ 25,400,2800,11).
vertex_ (i__26,1500,1900,3).
vertex__(i__32,1400,2475,1).

width _(i__11,150).

has_ (dev,i_7_ _2__1).
has__(dev,i_7_ _1_ _1).
has__(dev,i_14__ _1_ _2).

has_(dev,i_3). has_ (dev,i__4).has__(dev,i_6).

—
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has_ (dev,i__17).
has_ (t18,i__24).

__1,05).
—1,0.5).

has _(dev,i__11).

has__(dev,i__18).
has_ (t18,i__25).



APPENDIX N
CIF DATA OUTPUT FROM GENERIC FACTS

dbid('test.db’,cif,'1.0",'7 /26/84:21:55").
content([polygon(paly _1),

polygon(i__12), polygon(i__25),

box(box__1,300,50,725,800),  box(i_26,600,100,1450,1600),
box(box__2,300,100,900,800), box{i__24,600,200,1800,1600),
box(box_3,300,150,725,800),  box{i_23,600,300,1450,1600),
box(box __4,400,400,1200,1200), box{i__20,800,800,2400,2400),
box(i_ 18,750,750,40125,2375), box({i_ 17,750,750,47625,2375),
box(i_ 16,1000,250,51000,2875), box{i__ 15,1000,1000,51000,1000),
box(i__13,750,750,47625,875), box({i_6,250,1250,51125,2875),
box(i__4,5250,3000,49375,1500), box(i__3,6500,4250,50000,875),
wire(i__11,150), wire(i__10,150), wire(i__9,150),

def _sym('#1’), def_sym('#2'), def _sym('#3'),

has('#1’,box _4), bas('#3',i_8), has('#3"i_7_ _1_ 1),

has(‘#3i_7_ _1__2), has('#3'i_7__1__3), has(#3'i_7__2_ 1),
has('#3'i_7_ _2__2), has('#3'i_7_ _2_ _ 3), has('#1',box__3),
has('#1’ box _2), has('#1',box_1), has('#1’,poly __1),

has('#3' , mcall_4), has('#3',mcall _3), has(’#3',mcall __2),
has('#3',mcall _1), has('#2',i__26), has("#2",i_ 25),
has('#2',i _ 24), has(’#2',i_23), has('#2',i_20),

has('#3",i _18), has('#3",i _17), has("#3",i_16),

has('#3',i_15), has('#3'i _13), has("#3",i_12),

has(*#3',i_11), has('#3',i_10), has('#3i__9),

has('#3’,i _6), has('#3",i__4), has('#3"i_3),

scale('#3',1,1), scale('#2',1,1), scale('#1',1,1),
cali_sym(mcall_4,'#1'), call__sym(meall__3,'#1’), call_sym(mcall __2,'#1’),
call _sym(mcall _1,"#1'), call_sym(i_7____2_ _3/#2"),
call _sym(i_7_ _2_ _2'#2"), call _sym(i_7_ _2_ _ 1,#2),

call _sym(i_7_ _1_ _3/#2), call__sym(i_7_ _1_ _2/'#2),

call _sym(i_7_ _1_ _1,#2"), call _sym(i_8,'#2'),

transl(i_8,46750,0,1), transli_7____1_ _1,38667,1500,1),

transi{i__7_ _1_ _2,42333,1500,1), tramsl{i_7__ _1_ _ 3,46000,1500,1),
transl(i__7_ _2_ _ 1,38667,3000,1), transl(i_7_ _2___ 2,42333,3000,1),
transl(i_7_ _2__ _ 3,46000,3000,1), transl{mcall__1,41000,10250,1),
transl(mecall _ 2,41000,6625,1), transl{mcall__3,43500,10250,1),
transl(mecall _4,43500,6625,1),

rotate(i _3,-6500,0,1), rotate(i__4,-5250,0,1),

rotate(i __6,0,-250,1),  rotate(i__13,0,-750,1),

rotate(i__15,0,-1000,1), rotate(i_ 16,-1000,0,1),

rotate(i__17,0,-750,1), rotate(i__18,0,-750,1),



rotate(i__20,0,-800,1), rotate(box__4,0,-800,1),
rotate(i__23,0,600,1}, rotate(box_ 3,0,600,1),
rotate(i__24,0,600,1), rotate(box_ 2,0,600,1),
rotate(i__26,0,600,1), rotate(box__1,0,600,1),
vertex(poly _1,200,1400,11}), vertex(i__25,400,2800,11),
vertex(poly _1,200,1000,10),  vertex(i__25,400,2000,10),
vertex(poly _1,600,1000,9), vertex(i_ 25,1200,2000,9),
vertex(poly _ 1,600,1100,8), vertex(i_25,1200,2200,8),

vertex(poly _1,750,1100,7), vertex(i_ 25,1500,2200,7),
vertex(poly _ 1,750,600,6), vertex(i__25,1500,1200,6),
vertex(poly _ 1,850,600,5), vertex(i_25,1700,1200,5),

vertex(poly _ 1,850,1250,4), vertex(i_25,1700,2500,4),
vertex{poly _1,600,1250,3), vertex(i__25,1200,2500,3),
vertex(poly __1,600,1400,2), vertex(i__25,1200,2800,2),
vertex{poly __1,200,1400,1), vertex{i__25,400,2800,1),
vertex(i__12,53250,3000,11), vertex(i_12,46750,3000,10),
vertex(i_ 12,46750,-1250,9),  vertex(i_12,53250,-1250,8),
vertex(i_ 12,53250,2000,7),  vertex(i_ 12,48750,2000,6),
vertex(i__12,48750,1250,5), vertex(i_12,48000,1250,4),
vertex(i_ 12,48000,2000,3),  vertex{i__12,53250,2000,2),
vertex(i__12,563250,3000,1), vertex{i_11,47500,500,4),
vertex(i_11,47500,0,3), vertex(i__11,51000,0,2),

vertex(i__11,51000,500,1), vertex{i__10,49500,750,5),
vertex(i_10,50000,750,4), vertex(i__10,50000,2500,3),
vertex(i__10,51000,2500,2), vertex{i__10,51000,2750,1),
vertex{i__9,47500,2750,2), vertex(i__9,+7500,3000,1),
layer(i__4,nd), layer(box__3,np]}, Iayer(box __2,np),
iayer(i__24,np), layer(i _23,np), layer(i__12,nm),

layer(box__4,110), layer(box __1,14), layer(poly _ 1,110),

layer(i_26,14), layer{i_ 25110}, layer(i__20,110),
layer(i _18,111), layer(i__17,t11}, layer(i__16,111),
layer(i_ 15,111}, layer(i_ 13,111}, layer(i _ 11,110},
layer(i_10,110), layer(i__9,110), layer(i__6,10),
layer(i__3,140),

dummy]).
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APPENDIX O

GENERIC DATA FROM CIF DURING REVERSE TRANSLATION

polygon _{i__12).
polygon _(i__24).
polygon _ (i__18).
polygon _(i__15).

polygon _ (i __25).
polygon _{i_ 23).
polygon__{i__17).
polygon __{i__13).
polygon__(i__4).polygon__(i__3).

polygon _(i__26).
polygon _ (i__20).
polygon _ (i__16).
polygon _ (i_6).

wire__(i_11). wire_(i__10). wire_(i_9).

macro__def(t18). macro__def(dev). macro__call(i_7__ _2__ _ 3,t18).
macro__call(i_7 _ _2____2,t18). macro_call(i_7___2_ 1,u18).
macro__call(i_7_ _1_ _ 3,t18). macro_call(i_7_ _1__ _ 2,t18).
macro__call(i_7_ _1_ _ I,t18). macro__call(i__8,t18).
macro_call{i_14_ _2_ _ 2,t18). macro__call{i_14___ 2 1t18).
macro_call{i__14___1__ _2,t18). macro_call(i__14___1_ _ 1,t18).

scale__{100000000).

layer__(i_4,1). layer_ (i__24,2).layer _(i_23,2).
layer__(i_12,3).layer __(i_ 26,4).layer__(i__25,10).

layer_ (i_20,10).
layer_ (i__16,11).
layer_{(i_11,10).

layer _(i__18,11).
layer _(i__15,11).
layer __{i__10,10).

layer_ (i_17,11).
layer _(i__13,11).
layer__(i__9,10).

layer _(i_6,10).layer __(i__3,40).layer _ (i_32,16).

vertex__(i__3,53250,-1250,5).
vertex __(i__3,46750,3000,3).
vertex _(i_3,53250,-1250,1).
vertex _{i__4,52000,3000,4).
vertex __(i__4,46750,0,2).
vertex _(i__6,51750,3000,5).
vertex _(i_6,50500,2750,3).
vertex _{i__6,51750,3000,1}.
vertex _(i_13,47250,1250,4).
vertex_{i_ 13,48000,500,2).
vertex _(i_15,51500,1500,5).
vertex __(i__15,50500,500,3).
vertex __(i__15,51500,1500,1).
vertex _ (i_ 16,51500,3000,4).
vertex_ (i_16,50500,2750,2).
vertex __(i__17,48000,2750,5).
vertex__(i__17,47250,2000,3).
vertex _ (i_17,48000,2750,1).
vertex __(i_18,48750,2750,4).
vertex _ (i__18,49500,2000,2).
vertex__(i_ 20,2800,2800,5).

vertex_ (i__3,53250,3000,4).
vertex__(i_3,46750,-1250,2).
vertex__(i__4,52000,0,5).
vertex _ (i__4,46750,3000,3),
vertex__(i__4,52000,0,1).
vertex _(i__6,50500,3000,4).
vertex__(i__6,51750,2750,2).
vertex__(i_ 13,48000,1250,5).
vertex _(i_ 13,47250,500,3).
vertex _(i__13,48000,1250,1).
vertex (i 15,50500,1500,4).
vertex (i 15,51500,500,2).
vertex__(i_16,51500,2750,5).
vertex_ {i_ 16,50500,3000,3).
vertex _(i__16,51500,2750,1).
vertex _(i__17,47250,2750,4).
vertex _(i__17,48000,2000,2).
vertex__(i_18,49500,2750,5).
vertex _(i__18,48750,2000,3).
vertex _ (i__18,49500,2750,1).
vertex _ (i__20,2000,2800,4).



vertex __(i__20,2000,2000,3).
vertex _(i__20,2800,2800,1).
vertex _(i_23,1600,1300,4).
vertex _(i_23,1300,1900,2).
vertex__(i__24,1700,1300,5).
vertex _(i_24,1900,1900,3).
vertex__(:__24,1700,1300,1).
vertex _ (i__26,1500,1300,4).
vertex_(i_26,1400,1900,2).
vertex _ (i__25,400,2800,11).
vertex __(i__25,1200,2000,9).
vertex _ (i__25,1500,2200,7).
vertex _ (i__25,1700,1200,5).
vertex _(i_25,1200,2500,3).
vertex _(i__25,400,2800,1).

vertex _ (i__12,46750,3000,10).
vertex (i 12,53250,-1250,8).
vertex __{i__12,48750,2000,6).
vertex_ (i_12,48000,1250,4).
vertex _({i__12,53250,2000,2).

vertex _ (i__11,47500,500,4).
vertex__(i__11,51000,0,2).
vertex _ (i__10,49500,750,5).

vertex __(i__10,50000,2500,3).
vertex_ (i__10,51000,2750,1).

vertex__(i_9,47500,3000,1).
vertex_ (i_14__ _1__
vertex_ (i__14_ _2 _
vertex_ (i_7___2
vertex_ (i_7_ _1_

vertex _ (i__32,1400,2475,1).
width _{i__10,150).
orient__{i__32,0,0,0).

has_ (dev,i__8).has_ (dev,i_7_ _

has_ (dev,i_7_ _1_ _3).
has_ (dev,i_7___2__3).
has__(t18,i__24).
has__{dev,i__18).
has__ (dev,i__15).
has_ (dev,i_11).

_2,43500,10250,1).
~2,41000,10250,1).
_.2,42333,3000,1). vertex__(i_7_ _2_
_3,46000,1500,1). vertex_{i_7_ _1_ _
vertex_(i__7_ _1_ _ 1,38667,1500,1). vertex_(i_8,46750,0,1).

has__(t18,i__23).
has__(dev,i__17).
has__(dev,i__13).
has__(dev,i__10).

vertex _ (i__20,2800,2000,2).
vertex _(i_23,1300,1300,5).
vertex _(i_23,1600,1000,3).
vertex__(i_23,1300,1300,1).
vertex__(i__24,1900,1300,4).
vertex_(i__24,1700,1900,2).
vertex__(i__ 26,1400,1300,5).
vertex__(i__26,1500,1900,3).
vertex_(i_ 26,1400,1300,1).
vertex__(i_25,400,2000,10).
vertex_ (i__25,1200,2200,8).
vertex_ (i__25,1500,1200,6).
vertex_ (i 25,1700,2500,4).
vertex_ (i__25,1200,2800,2).

vertex__(i__12,53250,3000,11).
vertex_(i_ 12,46750,-1250,9).
vertex (i 12,53250,2000,7).
vertex _(i_12,48750,1250,5).
vertex _ (i__12,48000,2000,3).
vertex__(i__12,53250,3000,1).

vertex__(i__11,47500,0,3).
vertex __(i__11,51000,500,1).
vertex __(i__10,50000,750,4).

vertex_(i_10,51000,2500,2).

vertex _(i_9,47500,2750,2).
vertex _(i__14_ _1_

width __(i__11,150).

width _(i__9,150),

1__1).
has__(dev,i_7_

_2__ 1
has__(t18,i__26).

has__{dev,i_G).has_ (dev,i__4). has__(dev,i__3).

has_ (t18,i__32).
has_ (dev,i__14_ _1_ _2).
magnif _(i__14_ _2_
magnif _(i_14_ 1 __
magnif _{i__14,0.5).
relative _orient(i__8).
relative _orient(i__14).
relative _magnif(i __ 14).
text__(i__32).

textval _(i__32,[84,49,56]).

has_ (dev,i 14 2 2).

~2,05). magnif_(i_14__2
_2,0.5). magnif_(i_14_ _1__
magnif _(i__32,0.1).

has_(dev,i_ 14 _1__1)

vertex __(i__14_ _
vertex (i _7_
1,38667,3000,1).

2,42333,1500,1).

has__(dev,i__7__

_1,0.5).
_1,0.5).

_1,43500,6625,1).
2___ 1,41000,6625,1).

2 3,46000,3000,1).

1 2).

has__(dev,i_7_

has_ (t18,i_ 25).
has_ (t18,i__20).
has__(dev,i__16).
has__(dev,i__12).
has__(dev,i_9).

has_ (dev,i_14__ 2

_2

1).



h_just(i__32,center).
v_just(i__32,middle).



APPENDIX P
CALMA OUTPUT DATA FFROM REVERSE TRANSLATION

dbid(test.db gds,'1.0','8/8/84:13:32").
content(|fonts{gdsii:font.tx,2),
fonts(gdsii:font.tx,1),

generations(3),

db_ user_ unit{le-05),
db_unit_meter(100000000),

stret(dev), strct(t18),
bdry(i__25),  bdry(i_12),
path(i_9), path(i__10),  path(i_11),

srel(i__8,t18),
aref(i__7,t18),
text(i__32),

aref(i__14,t18),

box(i__3), box(i_4), box(i__6),

box(i__13), box(i__15), box(i__16),
box(i__17), box(i__18), box{i__20),
box(i_23), box(i__24), box(i__26),

dtatyp(i__26,0), dtatyp(i_25,0), dtatyp(i__24,0),
dtatyp(i_ 23,0}, dtatyp(i_20,0), dtatyp(i__18,0),
dtatyp(i__17,0), dtatyp(i__16,0), dtatyp(i__15,0),
dtatyp(i__13,0), dtatyp(i__12,0), dtatyp(i__11,0),
dtatyp(i__10,0), dtatyp(i__9,0), dtatyp{i__6,0),
diatyp(i__4,0), dtatyp(i__3,0),

xy(i_32,1400,2475,1),
xy(i _10,51000,2750,1),
xy(i_10,50000,750,4),
xy(i__11,51000,0,2),
xy(i__12,53250,3000,1),
xy(i__ 12,48000,1250,4),
xy(i_ 12,53250,2000,7),

xy(i_25,1200,2800,2),
xy(i__25,1700,1200,5),
xy(i_25,1200,2200,8),
xy(i_25,400,2800,11),
xy(i_ 26,1500,1900,3),
xy(i_ 24,1700,1300,1),
xy(i__24,1900,1300,4),
xy(i__23,1300,1900,2),
xy(i_23,1300,1300,5),
xy(i__20,2000,2000,3),

xy(i_9,47500,3000,1),
xy(i_10,51000,2500,2),
xy(i_ 10,49500,750,5),
xy(i_11,47500,0,3),
xyli_12,53250,2000,2),
xy(i_ 12,48750,1250,5),

xy(i__9,47500,2750,2),
xy{i__ 10,50000,2500,3),
xy(i__11,51000,500,1),
xy(i__11,47500,500,4),
xy(i__ 12,48000,2000,3),
xy(i__12,48750,2000,6),

xy(i__12,53250,-1250,8), xy(i__12,46750,-1250,9),
xy(i_12,46750,3000,10), xy(i_ 12,53250,3000,11), xy(i_ 25,400,2800,1),

xy(i_25,1200,2500,3),
xy(i_ 25,1500,1200,6),
xy{i_ 25,1200,2000,9),
xy(i__26,1400,1300,1),
xy{i__ 26,1500,1300,4),
xy(i_24,1700,1900,2),
xy(i_24,1700,1300,5),
xy(i_23,1600,1900,3),
xy(i_20,2800,2800,1),
xy(i_20,2000,2800,4),

xy(i_25,1700,2500,4),
xy(i_ 25,1500,2200,7),
xy(i_ 25,400,2000,10),
xy(i__26,1400,1000,2),
xy(i__26,1400,1300,5),
xy(i_24,1900,1900,3),
xy(i__23,1300,1300,1),
xy(i_23,1600,1300,4),
xy(i_ 20,2800,2000,2),
xy(i_20,2800,2800,5),



xy(i__18,49500,2750,1),
xy(i__ 18,48750,2750,4),
xy(i_ 17,48000,2000,2),
xy{i__17,48000,2750,5),
xy(i__16,50500,3000,3),
xy(i__15,51500,1500,1),
xy(i__15,50500,1500,4),
xy(i_13,-18000,500,2 ,
xy(i__13,48000,1250,5),
xy(i__6,50500,2750,3),
xy(i_4,52000,0,1),
xy(i__4,52000,3000,4),
xy(i__3,46750,-1250,2),
xy(i_3,53250,-1250,5),
xy(i_14,46000,3000,1),
xy(i__7,35001,3000,3),

xy(i__18,49500,2000,2),
xy(i_18,49500,2750,5),
xy(i__17,47250,2000,3),
xy(i_ 16,51500,2750,1),
xy(i_16,51500,3000,4),
xy(i_15,51500,500,2),
xy(i__15,51500,1500,5),
xy(i_ 13,47250,500,3),
xy(i_6,51750,3000,1),
xy{i_6,50500,3000,4),
xy(i__4,46750,0,2),
xy(i__4,52000,0,5),
xy(i_3,46750,3000,3),
xy(i_8,46750,0,1),

xy(i__18,48750,2000,3),
xy(i__17,48000,2750,1),
xy(i_17,47250,2750,4),
xy(i_ 16,50500,2750,2),
xy(i__16,51500,2750,5),
xy(i_ 15,50500,500,3),
xy{i_13,48000,1250,1},
xy(i_ 13,47250,1250,4),
xy(i_6,51750,2750,2),
xy(i__6,51750,3000,5),
xy(i_4,46750,3000,3),
xy(i_ 3,53250,-1250,1),
xy(i_3,53250,3000,4),
xy(i__7,35001,0,1),

xy(i_14,46000,10250,3), xy(i__ 14,41000,3000,2),

xy{i__7,46000,0,2),

lyr(i_32,16), lyr(i_3,40),
lyr(i__9,10), lyr(i__10,10),
lyr(i_13,11), lyr(i_15,11),
lyr(i_17,11),  lyr(i_18,11),
lyr(i_25,10), lyr(i_26,4),
lyr(i__23,2), lyr(i_24,2),

width{i__9,150), width{i_10.150),
columns(i__7,3),

columns(i__14,2),
rows{i__14,2), rows(i__7,2},
vert _pres{i__32,middle),

horz _pres{i__32,center),
string(i__32,[84,49,56]),
mag(i__14,0.5), mag(i__32,0.1),
has(dev,i__14), has(dev,i_7),
has(dev,i__3), has(dev,i_4),
has(dev,i__9), has(dev,i__10},
has{dev,i__12), has(dev,i_13),
has(dev,i__16), has(dev,i_17),
has{t18,i_20), has(t18,i__23),
has{t18,i_25), has(t18,i_26),
dummy]).

lyr{i_6,10),
lyr{(i_11,10),
Iyr(i__16,11),
lye(i 20,10},
lyr(i _12,3),
lyr(i__4.1),

mag(i__14,0.5),
has(t18,i_32),
has(dev,i_6),

has(dev,i__11),
has(dev,i__15),
has(dev,i__18),
has(t18,i _24),
has(dev,i_8),

width(i__11,150),



APPENDIX Q
REVERSE TRANSLATION SYSTEM LOG, CIF TO CALMA

CProlog version 1.4d.edai
[ Restoring file tranll.env |

yes
| ?- translate(’cif.out’,'cifl.out’,'gds.out’,'gdsK.out’,'test.db’,gds,’1.0",'8/8/84:13:32").
cif.out consulted 5180 bytes 1 sec.

>>Translate: V10 <<

dbid(test.db,cif,1.0,7 /26/84:21:55)

cifin.rul consulted 8572 bytes 1.6 scc.

cifK.out consulted 2844 bytes 0.45 sec.

fromdb(test.db,gds,1.4)
todb(test.db,cif,1.0)

Start Up  7.88 sec.
T=polygon__(_2049) 14 facts.
T=wire__(_2049) 3 facts.

=macro_def{__2049) 2 facts.
T=macro_call(_2049, 2050} 11 facts.

=scale _(__2049) 1 flacts.
T=layer _{_2049,_2050) 18 facts.
T=vertex__(_2049,__ 2050, 2051, 2052) 105 facts.
T=width _(__2049,_2050) 3 facts.
T=orient _(__2049, 2050, 2051, _2052) 1 facts.
T=has__{__2049, _2050) 29 facts.
T=magnil _(_ 2049, 2050) 6 facts.
T=relative__orient(__2049) 2 facts.
T=relative__magnif(__2049) 1 facts.
T=text_(__2049) 1 lacts.
T=textval _(__2049, 2050) 1 [facts.
T=h _ just(_ 2049, _2050) 1 facts.
T==v__just(_ 2049,__2050} 1 facts.
=tfont_(_2049,_2050) O facts.
T=end _of _file 0 facts.

200 facts total.

Generic  9.15 sec.

Keep 2.35 sec.

Unload  2.23 sec.

gdsout.rul consulted 5588 bytes 1.0167 sec,
T=fonts(_5625,__5626) 2 facts.
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T=generations{_ 5625} 1 facts.
T=db_user__unit(_5625) 1 facts.
T==db_ unit_meter(_5625) 1 facts.
T=stret{__5625) 2 facts.
T=bdry{__5625) 2 facts.
T=path{__5625) 3 facts.
=sref(_5625, _5626) 1 facts.
T=aref(_5625,_5626) 2 facts.
_ T=text(__5625) 1 facts.
T=node(__5625) O facts.
T=box(__5625) 12 facts.
T=dtatyp{_ 5625, _5626) 17 facts.
T=pathtype(__5625,__5626) 0 facts.
T=texttype{__5625, _5626) 0 facts.
T=nodetype(__5625,__5626) 0 facts.
T=boxtype(__5625,__5626) 0 facts.
T=xy(_ 5625, 5626, 5627, _5628) 101 facts.
T=lyr(_ 5625, 5626) 18 facts.
T=width(__5625, _5626) 3 facts.
T=reflection{__5625} 0 facts.
=abs_mag(__5625) O facts.
T=abs__angl(__5625) O facts.
T=columns(__5625, _5626) 2 facts.
T=rows(__5625,__5626) 2 facts.
T=font__no(__5625, _5626) O facts.
T=vert__pres(__5625, _5626) 1 facts.
T=horz_pres{__5625,_ 5626) 1 facts.
T=string{__ 5625, __5626) 1 facts.
T=mag(_ 5625, _5626) 3 facts.
=angle{_5625, 5626) 1 facts.
=propval{_5625, 5626, 5627} O facts.
T=current_rc(_ 5625, _ 5626, _5627) 0 facts.
T=has(__5625, __5626) 21 facts.
=end _of _file 0 facts.
199 facts total.
dbid(test.db, gds,1.0,8/8/81:13:32)
Phase 2 16.75 sec.
Output Keep 2.53 sec,

Total time is 42.35 sec.

yes
[ ?- halt.

| Prolog execution halted |



APPENDIX R
KEPT FACTS FROM CALMA TO CIF TRANSLATION

fromdb('test.db’,gds,'1.4").
todb(’test.db’,cif,'1.0°).
content([keep(angle(i__14,90)),
keep(xy(i_14,46000,8000,3)),
keep(xy(i_ 14,53250,3000,2)),
keep(xy({i__14,46000,3000,1)),
keep(xy(i__7,35000,3000,3)),
keep(xy(i__7,46000,0,2)),
keep(xy(i__7,35000,0,1})),
keep{columns(i__14,2)),
keep(columns(i_7,3}},
keep(rows(i__14,2)),
keep(rows(i__7.2)),
keep(aref(i__14,L18)),
keep{aref(i__7,t18)),
keep{db__user_ unit{1e-05)),
keep(generations(3)),
keep{fonts('gdsii:font.tx’,2)),
keep(fonts('gdsii:font.tx’,1}),
keep(dtatyp(i__26,0)),
keep{dtatyp(i__25,0)),
keep(dtatyp(i__24,0)),
keep(dtatyp(i__23,0)),
keep(dtatyp(i__20,0)),
keep(dtatyp(i__18,0)),
keep(dtatyp(i__17,0)),
keep(dtatyp(i__16,0)),
keep(dtatyp(i__15,0)),
keep(dtatyp(i__13,0)),
keep(dtatyp(i__12,0)),
keep(dtatyp(i_ 11,0)),
keep(dtatyp(i__10,0)},
keep(dtatyp(i_9,0)),
keep(dtatyp(i__6,0)),
keep(dtatyp(i_4,0)),
keep(dtatyp(i__3,0)),
keep(map(minst _1,'#1')),
keep(map(t18,'#2')),
keep(map(dev,'#3')),
keep(vertex _(i_32,1400,2475,1)),
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keep(layer_ (i__32,16)),
keep(has_(t18,i__32})),
keep(relative__orient{i__8)),
keep(relative _orient(i__14)),
keep(relative__magnif(i__14)},
keep{orient __(i_32,0,0,0)),

keep{magnif _(i__14__ _2_ _20.5)),
keep{magrif _(i_14_ _2_ _1,0.5)),
keep(magnif _(i__14__1_ _2,0.5)),
keep(magnif _{i_14_ _1_ _10.5)),
keep{magnif _(i__14,0.5)),

keep(magnif __(i__32,0.1)),

keep(v _just(i__32,middle)),

keep(h _just(i__32,center)),

keep(textval __(i__32,(84,49,56])),
keep(text__(i__32)),

keep(neall(i_14_ _2_ _ 2,meall_1)),
keep(ncall(i _14 __2___ 1,mecall_2}),
keep(ncall(i _14_ _1_ _ 2,mcall_3)),
keep(ncall(i_14 _ _1_ _1,mcall_4)),
keep(item _inst(minst _1,poly _1,i__25)),
keep(item _inst(minst __1,box_1,i__26)),
keep(item _inst(minst _1,box_ 2,i__24)),
keep(item _inst(minst _1,box_ 3,i__23}),
keep(item _inst(minst _1,box _ 4,i_20)),
keep(macro_inst(t18,0.5,minst __ 1)),
keep(scale _{100000000)),
keep(macro_call{i_14_ _2_ _ 2,t18)),
keep(has_(dev,i_14_ _2_ _2)),
keep(macro_callli_14_ _2_ _ 1,t18)),
keep(has_(dev,i_14__ _2__ _ 1)},
keep(macro_call{i__14_ _1___ 2,t18)),
keep(has_ (dev,i__14_ _1_ _2)},
keep(macro__call(i_14_ _1_ _1,t18)),
keep(has__(dev,i_14_ _1_ _1)),
dummy}).
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